Sensitivity Analysis and Uncertainty Quantification for BDT

Addressing Gaps and Challenges to Successful BDT Implementation:

Ralph C Smith October 1, 2024 IMAG/MSM Teaming4BDT Meeting

> IMAG Interagency Modeling and Analysis Group

 $\left(\Delta t, \mathbf{p} + \mathbf{F} \, \Delta t, t + \Delta t
ight) \, d^3 \mathbf{r} \, d^3 \mathbf{p} = f(\mathbf{r}, \mathbf{p}, t) \, d^3 \mathbf{r} \, d$

 $(\mathbf{r},\mathbf{p},t) d^{3} \mathbf{r} d^{3}$

col

NASEM Definition of a Digital Twin

"A digital twin is a set of virtual information constructs that mimics the structure, context, and behavior of a natural, engineered, or social system (or system-ofsystems), is dynamically updated with data from its physical twin, has a predictive capability, and informs decisions that realize value. The bidirectional interaction between the virtual and the physical is central to the digital twin."

Biomedical Digital Twin (BDT) Design Challenges

BDT Design Challenge(s) that can be addressed by this resource

Sensitivity Analysis (SA) and VVUQ for BDT:

- Quantify levels of uncertainty in models, parameters and data.
- Quantify role of machine learning in mechanistic models.
- Determine where/when data should be obtained to update models.
- Real-time computing and large-scale storage is continuing challenge.
- Surrogate and reduced-order models critical for real-time implementation – must permit accurate out-of-data predictions.
- Code verification generally necessary for all models.

My resource

Sensitivity Analysis/Uncertainty Quantification:

- Sensitivity analysis employed to determine subsets of influential parameters.
- Model parameters estimated via optimization, statistical inference, or data assimilation techniques.
- Experimental design to guide where to collect future data to best inform models.
- Code verification to establish accuracy; e.g., "Method of Manufactured Solutions".
- Uncertainty quantification to guide design, validation, and to assess risk.

NASEM BDT Design Principles

- Sensitivity analysis provides a broad framework to determine parameters, data, and responses for specific individuals.
- Uncertainty analysis employed to quantify degree to which BDT is effective for considered individuals.
- Associated mathematical/statistical/numerical framework can be scaled based on available data and knowledge.
- Statistical mixed-effects and measure transport provide framework to construct virtual populations.
- Considered framework is inherently modular and can be adapted to accommodate new information, data, and model constructs as they become available.

"New" math, stats, comp solutions

- Highly robust linear algebra and sampling-based sensitivity analysis techniques employed to determine noninfluential model parameters.
- Robust sampling algorithms employed to implement Bayesian inference of model parameters and experimental observation errors.
- Sample from parameter and error distributions to construct prediction intervals for Quantities of Interest; e.g., biomedical response for patient.
- Prediction intervals provide rigorous framework for validating BDTs.
- Prediction Intervals also employed to determine components of mechanistic models to be augmented via data-driven modeling.
- Design of experiments employed to determine where and when to collect additional data to improve predictions for BDTS.
- Reduced-order models employed for real-time implementation of BDTs.

"New" math, stats, comp solutions

Example: Minimal Physiologically-Based Pharmacokinetic (mPBPK) of brain for antibody therapeutics [Bloomingdale, Bakshi, Maass, et al., 2021]

Note: 16 ODE, 36 Parameters

Step 1: Employ sensitivity analysis to determine and verify 9 identifiable parameters

2024 IMAG/MSM Consortium Meeting: Teaming4BDT

"New" math, stats, comp solutions

Step 2: Compute parameter and response distributions

Parameter Distribution

Prediction Interval for Response

Current: Construct virtual population

2024 IMAG/MSM Consortium Meeting: Teaming4BDT

Integrating ethical design

- Use of digital twins may be used to reduce number of clinical trials to those which have proven safe and effective.
- Use of digital twins investigated to test novel and potential high-risk surgery techniques.
- Employ virtual populations to investigate safety, feasibility, and economic viability of considered procedures prior to clinical trials.

References

- R.C. Smith, *Uncertainty Quantification: Theory, Implementation and Applications*, Second Edition, SIAM, Philadelphia, 2024.
- K. Dadashova, R.C. Smith and M.A. Haider, ``Local Identifiability Analysis, Parameter Subset Selection and Verification for a Minimal Brain PBPK Model," *Bulletin of Mathematical Biology*, 2024.
- K.J. Pearce et al., ``Modeling and parameter subset selection for fibrin polymerization kinetics with applications to wound healing," *Bulletin of Mathematical Biology*, 83(5), 47, 2021.
- M.T. Wentworth, R.C. Smith and B.J. Williams, ``Bayesian model calibration and uncertainty quantification for an HIV model using adaptive Metropolis algorithms," *Journal of Inverse Problems in Science and Engineering*, 26(2), pp. 233-256, 2018.

Questions

Contact: Ralph C Smith Email: rsmith@ncsu.edu Telephone: 919-515-7552

2024 IMAG/MSM Consortium Meeting: Teaming4BDT