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Introduction!
•  We recently developed an agent-based (ABM) model of scar formation following infarction in the heart.1 !
•  Reflecting experimental evidence,2 strain is an important determinant of local cell and collagen alignment in 

the ABM; early versions of the model simply prescribed strains throughout healing as an input.!
•  In this study, we aimed to couple the ABM to a finite-element model, so that strains were determined 

throughout simulated healing by prescribed loading and evolving material properties.!

Agent-Based Model (ABM)!
•  In the ABM, fibroblasts migrate, proliferate, apoptose, deposit collagen aligned with the cell axis, re-orient 

collagen towards the cell axis, and degrade collagen; activity depends on local chemokine concentration.!
•  Fibroblast alignment is selected at each time step from a probability distribution determined by the vector 

average of individual orientation cues: mechanical, chemical, and structural.!

Figure 1: Key features of agent-based model. Left Panel: ABM of 20x20 element grid showing collagen density (red = more dense) and alignment (dash indicates mean vector). 
Center Panel: Fitted cell orientation as a function of difference in applied principal strains across a range of published cyclic stretching experiments (see Rouillard and Holmes3 for details). 
Right Panel: Key equations for defining and integrating mechanical, chemical, and structural cue vectors.!
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where E1, E2  are principal strains, M1  indicates 1st principal direction,
MVL = mean vector length, MA = mean angle of local collagen fibers

Finite-Element Model (FEM)!
•  The FEM was created in FEBio v1.5 (Musculoskeletal Research Lab, University of Utah).!
•  A single layer of 400 elements was employed to represent a thin midwall section of a healing rat infarct 

parallel to the epicardial surface; model was defined and modified by writing standard XML (.feb) files.!
•  Prescribed stresses were applied perpendicular to the edges of the mesh to reproduce measured strains.!

Figure 2: Key features of finite-element model. Left Panel: FE model simulated a small region of a healing myocardial infarct in a rat heart. Center Panel: FE mesh consisted of a single layer 
of 400 elements in the circumferential-longitudinal plane. Right Panels: Excerpts from XML (.feb) file used to define FEBio model showing header with solver settings and an example of the 
material definition for one of the elements.!
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ABM-FEM Coupling!
•  Because scar formation and remodeling occur on a much longer time scale than a single heart beat, the 

overall strategy was: 1) simulate a single beat in the FEM; 2) pass regional strains to the ABM and simulate 
a growth & remodeling step; 3) then update the FEM constitutive properties to reflect the new scar 
structure and repeat.!

•  The key challenge in this approach is translating ABM-predicted scar structure into tissue constitutive 
properties. We utilized a previously published approach for modeling scar based on the density and 
orientation of large collagen fibers.4!

•  We treated scar as isotropic, hyperelastic, and composed of collagen fibers embedded in an isotropic 
background matrix; assuming collagen fibers can only bear tension along their axes and summing over the 
ABM-predicted fiber distribution yields an expression for coefficients in the exponential strain-energy 
function (SEF) that depend only on global strains and fiber orientations in the reference state:!
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!
!
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!
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!
•  note: AF = collagen area fraction, terms in red not available in FEBio Fung orthotropic SEF.!

Results and Discussion!
•  Collagen deposition and degradation rates were chosen to match collagen accumulation data from healing 

rat infarcts (Figure 3); initial collagen content was 0.03%, with strong circumferential alignment.!
•  Reproducing measured acute strains (ELL > ECC) in the model led to early deposition of collagen fibers in 

the longitudinal direction, reducing mean vector length to near zero, in agreement with data (Figure 3).!
•  When applied stresses were held constant over the entire time course of healing, strains dropped rapidly 

as the infarct stiffened; gradually increasing stresses were required to maintain strains in measured range. 
In vivo, infarct thinning and cavity dilation do increase stresses during healing, though probably not 5-fold.!
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•  Overall, when stretch determines collagen alignment, the coupled system opposes perturbations: stretch 

anisotropy > collagen alignment in direction of highest stretch > more equal stretches. By contrast, when 
contact guidance determines collagen alignment, the coupled system amplifies perturbations: increased 
local collagen alignment > greater cell alignment > further increases in collagen alignment.!
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Figure 3: Results of coupled simulations. Left Panels: Collagen content and alignment fell within 1 SD of experimental measurements from healing rat infarcts regardless of assumptions about 
applied stress. Right Panels: When applied stress was constant across entire time course of healing, increase in stiffness due to collagen accumulation rapidly dropped strains below 
experimentally measured levels; gradually increasing applied stresses 5-fold to simulate infarct thinning and cavity dilation maintained strains closer to measured levels.!
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