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Multiscale Molecular Systems Biology:
Reconstruction and Model Optimization

An abstraction of select
biochemical, genetic, and
genomic experimental
knowledge about a
chosen biochemical
subsystem

General mathematical
model, combined with
particular reconstruction,
thus creating a
computational model.

Numerical optimization
problems with a firm
grounding in
mathematical
optimization theory.



Increasing the comprehensiveness of
genome scale computational models ....

— Increasing size
e e.g.single microbe versus whole microbial community

— 1 microbial species ~ 1e3 reactions
— 1 community (1000 species) ~ 1e6 reactions

— Increasing ratio of fastest to slowest timescale

* e.g. genome scale metabolic model versus integrated model
of metabolism and macromolecular synthesis
— Metabolic reactions
— Macromolecular synthesis reactions

— Increased simulation fidelity

* e.g. mass conservation alone, versus mass conservation,
energy conservation, second law of thermodynamics, reaction
kinetics, etc.



... leads to a mathematical and
numerical optimization challenge:

* Large scale numerical optimization

— Reduce computational complexity of algorithms to solve
optimization problems

 Multiscale numerical optimization
— Standard optimization software ideal for O(1) variables

 Mathematical formulation
— Biochemical function is an inherently nonlinear process

— How to formulae a mathematical modeling problem in a
form amenable to a polynomial time algorithm



History of the Multiscale Systems Biology Collaboration
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reconstructions of Escherichia coli. Mol Syst Biol. 9:661, 2013.



Reconstruction of reaction stoichiometry

FBA [c]FDP <> DHAP + G3P fbaA, fbaB

TPI [c]DHAP <> G3P tpiA

GAPD [c]G3P + NAD + Pl «»13DPG+H+NADH  gapA, gapC1, gapC2
PGK [c]13DPG + ADP <= 3PG +ATP pgk

PGM [c]3PG - 2PG gpmA, gpmB

ENO [c]2PG «=»H,O + PEP eno

PYK [c]JADP + H + PEP —» ATP + PYR pykA, pykF

ATP -1 0 -1 0 0 0 1 0 0 1
GLC -1 0 0 0 0 0 0 0 0 0
ADP 1 0 1 0 0 0 -1 0 0 -1
G6P 1 -1 0 0 0 0 0 0 0 0
H 1 0 1 0 0 1 0 0 0 -1
F6P 0 1 -1 0 0 0 0 0 0 0
FDP 0 0 1 -1 0 0 0 0 0 0
DHAP 0 0 0 1 -1 0 0 0 0 0
G3P 0 0 0 1 1 -1 0 0 0 0
NAD 0 0 0 0 0 -1 0 0 0 0
Pl 0 0 0 0 0 -1 0 0 0 0
13DPG 0 0 0 0 0 1 -1 0 0 0
NADH 0 0 0 0 0 1 0 0 0 0
3PG 0 0 0 0 0 0 1 -1 0 0

Stoichiometric Matrix (denoted S)
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Reconstruction of macromolecular synthesis machinery
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# references +500

Thiele I, Jamshidi N, Fleming RMT, Palsson B@. Genome-scale reconstruction of Escherichia coli's
transcriptional and translational machinery: a knowledge base, its mathematical formulation,

and its functional characterization. PLoS computational biology. 5(3):e1000312., 2009.




Integration of metabolism with macromolecular synthesis

C,N,S, P-sources
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Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO. Multiscale Modeling of
Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of
Codon Usage. PLoS One. 7(9):e45635, 2012.
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Conversion of integrated reconstruction of metabolism and
macromolecular synthesis into a computational model

Canonical steady-state modeling

Implicit representation of an enzymatic reaction:
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v'If metabolic reaction is used, then protein &
MRNA need to be produced

vIf flux through metabolic reaction increases,
the synthesis rate of protein and mRNA needs
to increase accordingly

Thiele I, Fleming RMT, Bordbar A, Schellenberger J, Palsson B@. Functional characterization of
alternate optimal solutions of Escherichia coli's transcriptional and translational machinery.

Biophysical journal. 98(10):2072-81, 2010.



Conversion of integrated reconstruction of metabolism and
macromolecular synthesis into a computational model

* Increasing scope of molecular processes represented

F—

'v protein metabolism g

Murein

Ribosomes

Glycogen

 However, molecular processes are intrinsically on different timescales scales...



Computational modeling requires numerical optimization
involving large, sparse & stiff stoichiometric matrices:
numerical analysis challenge

Many metabolic Reaction rates over many
moieties in one orders of magnitude
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SOFTWARE Open Access

Robust flux balance analysis of multiscale
biochemical reaction networks

Yuekai Sun'", Ronan MT Fleming??3, Ines Thiele?? and Michael A Saunders*

maximize ch
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BMC Bioinformatics 2013, 14:240 d0i:10.1186/1471-2105-14-240



SOFTWARE Open Access

Robust flux balance analysis of multiscale
biochemical reaction networks

Yuekai Sun'", Ronan MT Fleming??3, Ines Thiele?? and Michael A Saunders*

Table 1 FBA results for ME76664 before and after lifting

68299 rows Simplex Barrier

76664 columns  Before After Before After
lterations 48603 58288 56490 9985

CPU time 242 292 384 93
Infeasibilities 13x107%  29%x107® 14x107" 34x107°

FBA results for the E. coli Metabolic-Expression model ME76664 using CPLEX
primal simplex and barrier solvers. Iterations, time, and sum of infeasibilities
before and after lifting. The iterations in columns 4 and 5 include about 100 for
the barrier solver and the remainder for the simplex crossover.

BMC Bioinformatics 2013, 14:240 d0i:10.1186/1471-2105-14-240



SOFTWARE Open Access

Robust flux balance analysis of multiscale
biochemical reaction networks

Yuekai Sun'", Ronan MT Fleming??3, Ines Thiele?? and Michael A Saunders*
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Reaction fluxes in IAF1260
Figure 2 Flux variability analysis of the E. coli Metabolic-Expression model. Minimum and maximum flux for iAF1260 (which only accounts for
metabolic reactions) versus the minimum and maximum flux for the Metabolic-Expression model. Each colored box corresponds to a different

reaction in metabolism. The boxes are always longer on the axis for the metabolic model (iAF1260) than on the axis for the Metabolic-Expression
model. This demonstrates that increasing the comprehensiveness of the model toward whole cell modeling leads to a substantial shrinkage of the

steady state solution space. (Fluxes are plotted in mmol - g;vl ~hr ).

BMC Bioinformatics 2013, 14:240 d0i:10.1186/1471-2105-14-240



New insights from multiscale systems biology models:
mechanics of the genotype-phenotype relationship

* The genetic code has redundancy but no ambiguity
1. can be multiple codons per amino acid
2. multiple tRNA can read the same codon

* Codon usage bias i.e. frequency of synonymous codons differs between organisms, within
genomes, and along genes.

tRNA 4
tRNA 5
tRNA 6

60 amino acid coding codons 20 amina acids
1 start codon
3 stop codons

86 tRNAS

Thiele |, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO. Multiscale Modeling of Metabolism and Macromolecular
Synthesis in E. coli and Its Application to the Evolution of Codon Usage. PLoS One. 7(9):e45635, 2012.



New insights from multiscale systems biology models:
mechanics of the genotype-phenotype relationship

Genetic code of E. coli (RNA perspective)

U C A G
Uuu uUCu UAU UGU
Phe (2) Tyr (3) Cys (1)
UucC UCC UAC UGC
U Ser (5)
UUA ) UCA UAA Ochre UGA Opal
Leu
UUG UCG UAG Amber | UGG Trp (1)
Cuu CCu CAU CGU
His (1)
CucC CCC CAC CGC
C Leu (8) Pro (3) Arg (7)
CUA CCA CAA CGA
Gln (4)
CUG CCG CAG CGG
AUU ACU AAU AGU
Asn (4) Ser (5)
AUC lle (5) | ACC AAC AGC
A Thr (4)
AUA ACA AAA AGA
Lys (6) Arg (7)
AUG  Met(6) | ACG AAG AGG
GUU GCU GAU GGU
Asp (3)
GUC GCC GAC GGC
G val (7) Ala (5) Gly (6)
GUA GCA GAA GGA
Glu (4)
GUG GCG GAG GGG

QLo QP 0c g

E. coli has 86 tRNA
molecules.

Number of distinct
tRNA molecules per
amino acid are given in
parenthesis.

Leu = Leucine

« 6 different
Synonymous

« 8 different tRNA

« In wild type E. coli,
CUG 1s the dominant
synonymous codon

Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO. Multiscale Modeling of Metabolism and Macromolecular
Synthesis in E. coli and Its Application to the Evolution of Codon Usage. PLoS One. 7(9):e45635, 2012.



New insights from multiscale systems biology models:
mechanics of the genotype-phenotype relationship

Nucleotides on mRNA ' ' HJ .
Synonymous codon frequency ' ! . 3
in ME-matrix genes 0.‘74 0.38

Amino Acids in protein _6 _6

Biased ME-matrix

The biased strains were generated using the following algorithm:
Input: model, sequence for each gene in model, number of

MM iterations m

0.65 0.23 0.12 .
~ - ST e
Algorithm:

1. Choose randomly a codon, ¢;
2. Identify possible synonymous codons: ¢; ={c| = €s1,C,5--,Csk }

Hw 3. Choose randomly one codon from ¢;: ¢y
, 4. Replace all instances of ¢; with ¢g

5. Update ME-matrix for all genes based on new gene sequence:

Wildtype ME-matrix T

0.74 041 0.26 040 0.20

. _ l (a) Transcription reactions.
Equilibrated ME-matrix RNA degradation reactions.

(b)
ﬁ,% g!'-_u (c)  Translation reactions (tRNNA molecule will be updated based
0.34 : iti

0.51 0.34 on codon recognition).

6. Repeat 1 through 5 m times, m = 100.

Thiele |, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO. Multiscale Modeling of Metabolism and Macromolecular
Synthesis in E. coli and Its Application to the Evolution of Codon Usage. PLoS One. 7(9):e45635, 2012.



New insights from multiscale systems biology models:
mechanics of the genotype-phenotype relationship

* Changesin codon usage <« Analysis of numerical properties of flux balance analysis

affect solutions used to derive causal molecular mechanistic
 ability to grow hypothesis connecting codon usage with growth rate
* maximal possible * Limit to growth was ribosomal RNA operon transcription rate in
growth rate in silico. wild type, but leucyl-tRNA transcription rate in biased strains
Glucose, Aerobic Lactate / \
CUU (LeuU) |B1
— CUG (LeuP/Q/T/V/W
i | e WT, sz, Bg/Q/ NIW) CUC (LeuU) |B6, B7, B8, B10
B3 B3 [ UUA (LeuZ) | B3
B4 Wl B4 [
B , as ' QUA (LeuW)/ B4
B6 [ B6 [
- - UUG (LeuX/Z) B5
Ez | | Ez ’, Increased tRNA demand may be met by augmenting supply
B10 [ B10 [ * e.g. modification of a tRNA to expand its set of read codons
EQi - || EQ1 * In E. coli MAS39, a second leucyl-tRNA (tRNA'euW ) jg
| ' | | . . . .
Egs I Egj N — able to read CUU due to a uridine-5-oxyacetic acid
EQ4 | | EQ4 [ modification.
EQ5 ) | | EQS [ °

It remains to be experimentally established if E. coli
0.50 0.75 1.00 0.50 0.75 1.00 MG1655 tRNAIeuW can aISO read CUU
Growth rate (relative to wild type)

Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO. Multiscale Modeling of Metabolism and Macromolecular
Synthesis in E. coli and Its Application to the Evolution of Codon Usage. PLoS One. 7(9):e45635, 2012.



New insights from multiscale systems biology models:
iterative annotation of gene function

a - . b . .
In silico expression In vivo expression
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L-Arabinose L-arab Workflow TM0276  TM1847/1848
i. No annotated
L-arab transporter
TMO0280/0281/0282/0283/0284/0285
ii. Regulon expansion  TM0277/0278/0279 Q————eem—
with predicted AraR motif
TM1218/1219/1220/1221/1222 TM1223
) L-arab
iii. Putative L-arab
ABC transporter
i CelR motif
Celloblose Transcription unit correction mz L
TM1218/1219/1220/1221/1222 TM1223 3 1JT AAAAT TTTCA
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(a & b) In vivo transcriptome

measurements confirm the in silico

transcriptomics predictions for

differential expression of genes

when growing on L-Arabinose or

cellobiose minimal medium.

(c) scanning of promoter and

upstream regions of essential genes

identified high-scoring motifs

(d) scan of remaining genome for

AraR motif identified different

genes, within a single transcriptional

unit, with sequences similar to

e asugar-binding protein for an
arabinose ABC transporter
e apermeases of an ABC

transporter

iterative workflow: reconstruction->

model-> prediction -> new

annotation-> better model -> ...

Lerman JA, et al. In silico method for modelling metabolism and gene product expression at

genome scale. Nat Commun. 3:929, 2012.



 Metabolic models for increasing number of species
 We envisage a demand for integrated models of metabolism and

macromolecular synthesis for all of these species

160

139

140
123

120 —
105

100 —

Q
©
o
¢
Q
e
(@]
c
Q
oo
o
Q 78
<= 80
2
S 58
Qg 60
H—'_E
O o
EE 42
245 Y9 28
€ 5
2 0 17 %0
e | 0 10
gu 5 6 8
£3 13 i A
2_8 O I-I-I-I-I.I I I I I I I I I
E o 2 8 3 8 8 8§ 8 8 5 8 3 g g § ¢
E.'G-j ()] o o o o o o o (@] (@] o o o o o
SE - ~ ~ ~N ~ ~N ~N ~N ~N ~ ~N ~ ~ ~N ~N

Year



UO1 Aims 2012-2017:
Systems Biology Research Group, UCSD

Prototyping reconstruction & Development of software workflows for
validation procedure on individual > multiscale model reconstruction and systematic

organisms, e.g. E. coli & T. maritima validation using transcriptomic data

d : — Develop software for
y x| [ reconstruction of
| restores ] biochemical networks
L Gene functions Flux balance H 3
% E— [ spanning multiple cellular
. D | |podicate = Gap sy subsystems.
_ for each tRNA e issing genes H
> e = | wdncos | — Develop techniques for
Qs | modfiatons | | | asembly uantitative prediction and
> Metallo-ion 4 q M : p H
- it RNA processing Legacy dolf validation of transcript
'(lj'rar:cs;rlptlon L —_— and databases ) H 1
— R Poten ] [ on w / abundance in an integrated
(I:?:""f‘ﬂ°”] < — e W model of metabolism,
composition, rotein folding xtension of _— .
< Protein complex :;)ttjri;tion ;%%nfwg;i&d./ r:;frlr;av;y“::gmm matroma | c 'C u I ar Synt h el
Al | Saomety matusion | |rectons SRR and regulation
> O — Protein folding Massand Sner?:t::on : H
- e . g | amvoren * Comparison with new
, %% medfcation Bt - experimental data
~ ignal sequences — s [r—
" _ s CyberCell * e.g. for Geobacter spp.
P demand kil {RNA database — biogeochemical cycling of
- _ ) SRR carbon and metals

Feist, A. et al. Nat Rev Microbiol, 7(2):129-143, 2009. — bioenergy applications.



UO1 Aims 2012-2017: Systems
Optimization Laboratory, Stanford.

* Development of quad precision versions of large-scale LP/QP/NLP solvers (SQOPT , SNOPT),
and their linear sparse-matrix algebra ‘engine’ (LUSOL)
* re-implement in Fortran 2003 with quad precision variables
* redesign of key components, e.g., storage allocation
» Software: www.stanford.edu/group/SOL/multiscale/software.html

Decade Variables | Computation | ncreasing the reliability,
: _ while maintaining
1 a 1 970 FOI’tran Slngle S|ng|e efﬁciency of numerical
1b 1970 C single optimization solvers
2a | 1980 single single
2b double double
3a | 2010 single single
Current large-scale
3b double double w
3c quad quad <:‘|

Table 2: History of Scientific Computing



ncreasing size of E. coli reconstructions

80,000
@ reactions

A genes
[l components

« |: Transcription, II: mMRNA degradation;
 |ll: translation; c
* |V: protein maturation,
+ V: protein folding; VI: metallo-ion binding; -
VII: protein complex formation; \
* VIII: ribosome assembly;
+ IX: RNA processing; X: rRNA modification; /
2250 1. xI: tRNA modification: XII: tRNA charging
}- compartmentalized reconstruction (distinct periplasm)
« extensive cell wall metabolism (phospholipids, murein, LPS)
* reaction thermodynamics /7

60,000

« alternate carbon utilization s
* quinone characterization
* elemental and charge balancing

« fatty acid metabolism
» expanded cellular transport systems P ”~ 7
» used genome as a scaffold

Number of reactions
~ ) o
(&) o (&)}
o o o
1 1

« cell wall constituent biosynthesis
« cofactor biosynthesis P

 growth-dependent biomass objective function‘ -
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Thiele I, Fleming RMT, Que R, Bordbar A, Diep D, Palsson BO. Multiscale Modeling of
Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of

Codon Usage. PLoS One. 7(9):e45635, 2012.



UO1 Aims 2012-2017: Systems
Optimization Laboratory, Stanford.

* Development of hypergraph network flow algorithms for optimization with biological
networks
» Standard network flow algorithms
* Complexity O(n)
* Designed specifically for graphs, whereas biological networks are hypergraphs
e Standard linear optimization algorithms
 Complexity O(n”3)
* Used for, amongst many other things, optimization over biochemical networks
e e.g. Flux Balance Analysis
* Open research question: Does there exist an algorithm of lower computational
complexity than a standard linear optimization solver, specifically for biochemical
hypergraph flow problems?

maximize CTV

vV

subjectto  Sv =0,
Cv < d,

Vl S VS VLl)



Biochemical reaction network models are increasing in scope
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However, the

currently available approaches for large scale maximize clv

modeling of biochemical reaction networks only explicitly v
represent reaction flux, not molecular abundance. subjectto  Sv =0,
Open question: does there exist a numerically scalable Cv<d,

: el o
approach to model fluxes and concentrations explicitly v <v <y,



e Consider a biochemical network with m molecular species and n re-
versible chemical reactions

e Define forward and reverse stoichiometric matrices, F, R € ZZI}", re-

spectively, where F;; denotes the stoichiometry! of the it" molecular
species in the jt* forward elementary reaction and R;; denotes the sto-
ichiometry of the i** molecular species in j** reverse elementary reac-

tion.

e We assume that every elementary reaction conserves mass, that is,
there exists at least one positive vector I € R, satisfying (R— F)T1 =0
‘where R — F represents net reaction stoichiometry.

o Let ¢ € RT,, denote a variable vector of molecular species concentra-
tions.

e Assuming constant non-negative elementary kinetic parameters ks, k, €

%, We assume elementary reaction kinetics for forward and reverse

elementary reaction rates as vs(ks,¢) = exp(In(ks) + FT In(c)) and
vr(kr, ¢) = exp(In(k,) + FT In(c)), respectively.



The deterministic dynamical equation for time evolution of molecular
species concentration may then be expressed as

de
dt

(R — F)(vg(ks, ) — vr(kr, c)),
(R — F)(exp(In(ks) + FT In(c)) — exp(In(k,.) + FT In(e))) = v(c)

Assuming a non-equilibrium steady state, % = 0and vs(ky,c) # vr(kr,c),
one is then interested in the nonlinear, nonconvex set of steady state
molecular species concentrations {¢|v(c) = 0}.

Modeling challenge
* High dimensional
* many molecular species and reactions
Nonlinear
* nonlinear relationship between molecular species abundance and reaction rate
* Need algorithms with low polynomial time complexity, guaranteed convergence,
certificate of infeasibility
* mathematical model & algorithm formulation problem
e Multiscale
* molecular species concentrations vary over many orders of magnitude
e e.g.transcript abundance versus metabolite abundance
* Paucity of kinetic parameters



Stephen Boyd and
Lieven Vandenberghe

convex
Optimization

Nonlinear relations between
reaction rates and metabolite
concentrations satisfied at
optimum of a convex
optimization problem

Amenable to solution with
polynomial time algorithms




A variational principle for computing nonequilibrium fluxes
and potentials in genome-scale biochemical networks

R.M.T. Fleming ®*, C.M. Maes ®, M.A. Saunders ¢, Y. Ye €, B.@. Palsson¢
ABSTRACT Journal of Theoretical Biology 292 (2012) 71-77

We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical
reactions, with the property that energy conservation and the second law of thermodynamics both hold
at the problem solution. This suggests a new variational principle for biochemical networks that can be
implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization
problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem
holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary
kinetic parameter when mass action kinetics is assumed.

Theorem 1. Let v; be any set of optimal exchange fluxes from
problem (FBA). Define b= —S.v;, and let ¢ be any vector in R". The
convex equality-constrained problem

Constraint on ratio of
concentrations, not

absolute

minimioze ¢ = v{ (log(vy)+ c—e)+ vy (log(v;)+c—e) concentration.

RO
subject to Svy—Svr=b:y (EP)  « Bjochemical reaction
is then feasible, and its solution (v;,v}) is a set of thermodynamically directions are an
feasible internal fluxes. The combined vector (v},v;,v;) is thermodyna- evolved subset of
mically feasible and optimal for problem (FBA). The associated chemical thermodynamically
potentials u may be obtained from the optimal Lagrange multiplier feasible directions.

y* € R™ for the equality constraints according to u = —2py*.
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Consistent Estimation of Gibbs Energy Using Component
Contributions
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Figure 3. A diagram illustrating how the component contribution method projects the stoichiometric vector onto the different
spaces. (A) The reaction vector x is decomposed into the two components xz and xy, where the reactant contribution and group contribution
methods are used for the relevant components. Later, xy is decomposed into xyz and xyy. The same projection is shown graphically in (B) where
the green plane represents the range of S and the normal to that plane represents the null space of ST. (C) An example for a reaction which
decomposes into two non-zero components. In this case, the component xyy is equal to 0, which means that the reaction is covered by the
component contribution method.



Mass conserved elementary kinetics is sufficient for the existence
of a non-equilibrium steady state concentration

R.M.T. Fleming *"*, I. Thiele *¢ Journal of Theoretical Biology 314 (2012) 173-181

When does there exist a non-equilibrium steady state concentration?

Theorem 1. Let the dynamical equation for mass conserved ele-
mentary kinetics be
. dX T T
C= I =S (Kf - exp(F" - In(c))—K; - exp(R" - In(0))), 4)
where c=c(t)e R™ is the molecule concentration at time t >0,
¢eR™ is the time derivative of concentration, K;=diag(ky),
=diag(kr) and ks, kr € R", , are non-negative forward and reverse
kmetlc parameters. F,.R € R”' are forward and reverse stoichiometric
matrices. S= —F+R is a conszstent stoichiometric matrix defined by
the existence of at least one strictly positive vector | € R ,, such that
ST . 1 = 0. Assuming a finite and strictly positive initial concentration
co = c(0) e R, ,, then there exists at least one finite and non-negative
steady state concentration x*, ,, such that ¢ =0.



UO1 Aims 2012-2017: Systems Biochemistry
& Molecular Systems Physiology Groups, Luxembourg.

* Scalable algorithms for multiscale reconstruction and modeling
» Software to enable high fidelity reconstruction of biochemical networks
e e.g. checking for consistency with known biochemistry
* e.g.suggesting extension to existing reconstruction to account for known
biochemical function
* Multiscale mass conserved elementary kinetic modeling
* Forward problem
e given kinetic parameters, compute a non-equilibrium steady state
* Inverse problem
e given reaction stoichiometry, experimental boundary conditions
thermodynamic constraints and net reaction directions consistent with
biochemistry, search among consistent kinetic parameters
* Gradient-based search of kinetic parameters in multiscale models.

existing algorithms do not search for kinetic parameters using gradient
based methods due to a perception that the merit function for such a
problem contains local minima

High risk, high gain project: does a formulation of the problem exist
which is amenable to solution with a polynomial time algorithm
guaranteed to reach a global optima?



Sharing models

* Network reconstructions used to generate
computational models are always made
available with the accompanying paper

— Systems Biology Markup Language (SBML)
* all monoscale models

* for multiscale models, standardised representation that
is scalable needs to be developed.

* multiscale models still distributed, but representation
not yet standardised.

http://systemsbiology.ucsd.edu/Downloads
http://thielelab.eu/

http://www.stanford.edu/group/SOL/multiscale/models.html



Open source software

* rBioNet - a COBRA toolbox extension for reconstructing high-quality
biochemical networks (Thorleifsson & Thiele, Bioinf, 2011)

, Reconstruction Creator =B ’Yh‘
o vo n Be rta I a nﬁy 1 [} 0 - a File Statistics Help N
CO B RA to O I b OX eXt e n S i O n Reconstruction: Empty 7 7 7 7 Gene Index: ExailmpIeGenelndex.txt
Enable | Abbreviation| Description . . Fovmyl'a Reversible | GPR LB uB
to thermodynamically T B e e o v e —
. [ 8 | E AKGDH 2-Oxoglutara... akg[c] + coa[c] + nad[c] -> co2[c] + nadh[c] + su... 0(b0116 and b0726 and ... 0 100C
H 9 [+ AKGt2 2- lutarat... akg[e] + h[e] <=> akg[c] + h[c] 1b2587 -1000 100C
CO n St ra I n m eta b O | I C m O d e | S I 72 ALCDer alzox:ogl ::r:; - :togh?c] + n:d[::] ><a=>gaccald[c]c* h[c] + nadh[c] 1 (b0356 or b1478 or b1241) -1000 100C
. . . . [ 11 | 2 ATPM ATP mainten... atp[c] + h2o[c] -> adp[c] + h[c] + pi[c] 0 8.3900 100C
(F/emlng & Th,ele Blolnf 201 1) | 12 | ATPS4r ATP synthas. 1 (((b3736 and b3737 and -1000 100
4 / L v Biomass_Ec... Biomass Obj... 1.496 3pg[c] + 3.7478 accoalc] + 59.81 atp[c] + 0... 0 0 100C
14 v co2t CO2 transpo... co2[e] <=> co2[c] 150001 -1000 100C ~
* COBRA Toolb 2.0 - '
o o ox v ¢ Load Reaction ] [ Add Reaction ] [ New Reaction Edit Reaction ] [ Remove Reaction
ua ntita-l—ive red iction Of Edit Reaction Reaction Propert
q p LB U €S Abbreviation: SDOAN
. . 0 1000 4 Reversibl o
cellular metabolism with
t . t b d d | (3156.1 or (29796.2 and 53630.1)) KegglD:
CO n S ra I n - a S e m O e s Subsystem Description: S'-deoxyadenosine nuclosidase
( SCh e / I en be rg er et a /, N at P ro to C, : Formula: dad-5{c] + h2o[c] -» Selribc] + ade[c]
201 1) [ Description I | View Genes ]

e COBRApy - COnstraints-Based Reconstruction and Analysis for Python (Ebrahim et

al, BMC Syst Biol, 2013)

« fastFVA — a tool for computationally efficient flux variability analysis (Gudmunsson &

Thiele, BMC Bioinf, 2010)

* robustFBA - Robust flux balance analysis of multi- scale biochemical reaction

networks (Sun et al, BMC Bioinf, 2013)

See http://www.stanford.edu/group/SOL/multiscale/software.html for links to software




Open source software continued:

 LUSOL, LUMOD Routines for dense and sparse LU factorization.

 PDCO A primal-dual interior point method for large-scale optimization with
convex objective and linear constraints.

*  PNOPT Proximal Newton-type methods for minimizing composite functions
(unconstrained optimization of the sum of smooth and nonsmooth functions).

* Need help with cobra methodology?
 openCOBRA Google group
* https://groups.google.com/forum/#!forum/cobra-toolbox
« >2009
* 430 posts
* 300 members
* Anyone can view content.
* Anyone can apply to join.

See http://www.stanford.edu/group/SOL/multiscale/software.html for links to software
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