
5
The Steady State

5.1 Steady State

The steady state is one of the most important states to consider in a dynam-
ical model. In the literature it is also sometimes referred to as the stationary
solution or state, singular points, fixed points, or even equilibrium. We will
avoid the use of the term equilibrium because of possible confusion with
thermodynamic equilibrium.

The steady state is the primary reference point from which to consider
a model’s behavior. At steady state, the concentrations of all molecular
species are constant and there is a net flow of mass through the network.
This is in contrast to systems at thermodynamic equilibrium, where, al-
though concentrations are constant there is no net flow of mass across the
system’s boundaries. We can conveniently illustrate the steady state using
a graphical procedure. Consider the simple model below:
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Xo
v1

S1
v2

X1

whereXo andX1 are constant boundary species and S1 is a floating species.
For illustration purposes we will assume some very simple kinetics for
each reaction, v1 and v2. Let us assume that each reaction is governed by
simple first order mass-action kinetics,

v1 D k1Xo

v2 D k2S1

where k1 and k2 are both first-order reaction rate constants. In Figure 5.1
both reaction rates have been plotted as a function of the floating species
concentration, S1.
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Figure 5.1: Plot of reaction rates versus concentration of S1 and dif-
ferent values for k2 for the system Xo ! S1 ! X1. The inter-
section of the two lines marks the steady state point where v1 D v2.
Xo D 1; k1 D 0:4. Note that as k2 is decreased the steady state level of
S1 increases.

Note that the reaction rate for v1 is a horizontal line because it is unaf-
fected by changes in S1 (no product inhibition). The second reaction, v2 is
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shown as a straight line with slope, k2. Notice that the lines intersect. The
intersection marks the point when both rates, v1 and v2 are equal. This
point marks the steady state concentration of S1. By varying the value of
k2 we can observe the effect it has on the steady state. For example, Fig-
ure 5.1 shows that as we decrease k2 the concentration of S1 increases.
This should not be difficult to understand, as k2 decreases, the activity of
reaction v2 also decreases. This causes S1 to build up in response.

In this simple model it is also straight forward to determine the steady state
of S1 mathematically which amounts to finding a mathematical equation
that represents the intersection point of the two lines. We recall that the
model for this system comprises a single differential equation:

dS1

dt
D k1Xo � k2S1

At steady state, we set dS1=dt D 0, from which we can solve for the
steady state concentration of S1 as:

S1 D
k1Xo

k2
(5.1)

This solution tells us that the steady state concentration of S1 is a function
of all the parameters in the system. We can also determine the steady state
rate, usually called the pathway flux and denoted by J, by inserting the
steady state value of S1 into one of the rate laws, for example into v2:

J D k2
k1Xo

k2
D k1Xo

This answer is identical to v1 which is not surprising since in this model the
pathway flux is completely determined by the first step and the second step
has no influence whatsoever on the flux. This simple example illustrates a
rate limiting step in the pathway, that is one step, and one step only, that
has complete control over the pathway flux.

A slightly more realistic model is the following:

Xo
v1

S1
v2

S2
v3

X1
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where the rate law for the first step is now reversible and is given by:

v1 D k1Xo � k2S1

The remaining steps are governed by simple irreversible mass-action rate
laws, v2 D k3S1 and v3 D k4S2. The differential equations for this
system are:

dS1

dt
D .k1Xo � k2S1/ � k3S1

dS2

dt
D k3S1 � k4S2

The steady state solution for S1 and S2 can be obtained by setting both
differential equations to zero to yield:

S1 D
k1Xo

k2 C k3

S2 D
k3k1Xo

.k2 C k3/k4

The steady state flux, J , can be determined by inserting one of the solu-
tions into the appropriate rate law, the easiest is to insert the steady state
level of S2 into v3 to yield:

J D
k3k1Xo

k2 C k3

Once the first step is reversible we see that the steady state flux is a function
of all the parameters except k4 indicating that the first step is no longer the
rate limiting step. The equation shows us that the ability to control the flux
is shared between the first and second steps. There is no rate limiting step
in this pathway. Note that if we set k2 D 0 then the solution reverts to the
earlier simpler model.
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We can also make all three steps reversible (kf Si � krSiC1), so that the
solution is given by:

S1 D
Xok1.k4 C k5/CX1k4k6

k3k5 C k2.k4 C k5/

S2 D
X1k6.k2 C k3/CXok1k3

k3k5 C k2.k4 C k5/

The last example illustrates the increase in complexity of deriving a math-
ematical solution after only a modest increase in model size. In addition,
once more complex rate laws as used, such as Hill equations or Michaelis-
Menten type rate laws, the solutions become exceedingly difficult to de-
rive. As a result, in most cases, steady states are computed numerically
rather than analytically.

5.2 Computing the Steady State

In those (many) cases were we cannot derive an analytical solution for
the steady state we must revert to numerical methods. There are at least
two methods that can be used here. The simplest approach is to run a
time course simulation for a sufficiently long time so that the time course
trajectories eventually reach the steady state. This method works so long as
the steady state is stable, it cannot be used to locate unstable steady states
because such trajectories diverge. In addition, the method can sometimes
be very slow to converge depending on the kinetics of the model. As a
result, many simulation packages will provide an alternative method for
computing the steady state where the model differential equations are set
to zero and the resulting equations solved for the concentrations. This
type of problem is quite common in many fields and is often represented
mathematically as the quest to find solutions to equations of the following
form:

f .x; p/ D 0 (5.2)
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where x is the unknown and p one or more parameters in the equations.
All numerical methods for computing solutions to equation 5.2 start with
an initial estimate for the solution, say xo. The methods are then ap-
plied iteratively until the estimate converges to the solution. One of the
most well known methods for solving equation 5.2 is called the Newton-
Raphson method. It can be easily explained using a geometric argument,
Figure 5.2. Suppose x1 is the initial guess for the solution to equation 5.2.
The method begins by estimating the slope of equation 5.2 at the value x1,
that is df=dx. A line is then drawn from the point (x1; f .x1/), with slope
df=dx until it intersects the x axis. The intersection, x2, becomes the next
guess for the method. This procedure is repeated until xi is sufficiently
close to the solution. For brevity the parameter is omitted form the follow-
ing equations. From the geometry shown in Figure 5.2 one can write down
the mathematical equivalent of this procedure as:

@f

@xk
D

f .xk/

xk � xxC1

x1x2x3

x

y

y =f (x)

Solution

Starting Point

df/dx

Figure 5.2: The geometry of Newton-Raphson’s method
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Iteration Estimate

0 15
1 8.33333
2 5.666
3 5.0392
4 5.0001525
5 5.0

Table 5.1: Newton method used to compute the square root of 25

or by rearrangement:

xkC1 D xk �
f .xk/

@f=@xk
(5.3)

In this form we see the iterative nature of the algorithm.

Before the advent of electronic calculators that had a specific square root
button, calculator users would exploit the Newton method to estimate square
roots. For example, if the square root of a number, a is equal to x, that is
p
a D x, then it is true that:

x2 � a D 0

This equation looks like an equation of the form 5.2. We can therefore
apply the Newton formula (equation 5.3) to this equation to obtain

xkC1 D
1

2

�
xk C

a

xk

�
Table 5.1 shows a sample calculation using this equation to compute the
square root of 25. Note that only a few iterations are required for conver-
gence.

One importance point to bear in mind, the Newton-Raphson method is not
guaranteed to converge to the solution, this depends heavily on the start
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point and the nature of the system being solved. In order to prevent the
method from continuing without end in the case when convergence fails if
is often useful to halt the method after a maximum of iterations, say one
hundred iterations. In a case like this, a new initial start is given and the
method tried again. In biochemical models we an always run a time course
simulation for a short while and use the end point of that as the starting
point for the Newton method. This approach is much more reliable. If
the method does converge to a solution there are various ways to decided
whether convergence has been achieved. Two such tests include:

1. Difference between Successive Solutions Estimates. We can test for
the difference between solution xi and the next estimate, xiC1, if
the absolute difference, jxi � xiC1j is below some threshold then
we assume convergence has been achieved. Alternatively we can
measure the relative error is less than a certain threshold (say, 1%).
The relative error is given by

� D
xiC1 � xi

xiC1
� 100%

The procedure can be made to stop at the i -th step if jf .xi /j < �f
for a given �f .

2. Difference between Successive dSi=dt Estimates. Here we estimate
the rates of change as the iteration proceeds and assume convergence
has been archived when the different between two successive rates
of change are below some threshold.

The Newton method can be easily extended to systems of equations so that
we can write the Newton method in matrix form:

xkC1 D xk �

�
@f .x/

@x

��1
f .xk/ (5.4)

Ifm is the number of floating species in the model, then xk is anm dimen-
sional vector of species concentrations, f .x/ is a vector containing the m
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rate of change and @f .x/=@x the m �m Jacobian matrix.

Newton Algorithm

1. Initialize the values of the concentrations, s, of the molecules species
to some initial guess, obtained perhaps from a short time course sim-
ulation.

2. Compute the values for f .s/, that is the left-hand side of the differen-
tial equations (ds=dt ).

3. Calculate the matrix of derivatives, @f =@s that is d.ds=dt/=ds, at the
current estimate for s.

4. Compute the inverse of the matrix @f =@s

5. Using the information calculated so far, compute the next guess skC1

6. Compute the new value of f .s/ at skC1. If the value is less than
some error tolerance then assume the solution has been reached, else
return to step 3, using skC1 as the new starting point.

Although the Newton method is seductively simple, it requires the initial
guess to be sufficiently close to the solution in order for it to converge. In
addition convergence can be slow or not occur at all. A common problem
is that the the method overshoot the solution and then beings to rapidly
diverge.

A further strategy that is frequently used to compute the steady state is to
first use a short time course simulation to bring the initial estimate closer
to the steady state. The assumption here is that the steady state is stable.
The final point computed in the time course is used to seed a Newton like
method, if the Newton method fails to converge then a second time course
simulation is carried out. This can be repeated as many times as desired.
If there is a suspicion that the steady state is unstable, one can also run
a time course simulation backwards in time. In general there is no sure
way of computing the steady state automatically and sometimes human
intervention is required to supply good initial estimates.
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As a result of these issues the unmodified Newton method is rarely used
in practice for computing the steady state of biochemical models. One
common variant, called the Damped Newton method is sometimes used.
Both Gepasi and SCAMP use the Damped Newton method for computing
the steady state. This method controls the derivative, df=dx by multiply-
ing the derivative by a factor ˛, 0 < ˛ < 1 and can be used to prevent
overshoot. There are many variants on the basic Newton method and good
simulation software will usually have reasonable methods for estimating
the steady state.

In the last ten years more refined Newton like methods have been devised
and one that is highly recommended is NLEQ2. This is used by both Jarnac
and PySCeS for computing the steady state. The stiff solver suite sundials
also incorporates an equation solver, however experience has shown that is
it not as good as NLEQ2.

Solving the Steady State for a Simple Pathway

We are going to use the Newton-Raphson method to solve the steady state
for the following simple pathway. We will assume that all three reactions
are governed by simple mass-action reversible rate laws. Species Xo and
X1 are assumed to be fixed and only S1 and S2 and floating species.

Xo
v1

S1
v2

S2
v3

X1

The differential equations for the model are as follows:

dS1

dt
D .k1Xo � k2S1/ � .k3S1 � k4S2/

dS2

dt
D .k3S1 � k4S2/ � .k5S2 � k6X1/ (5.5)

The values for the rate constants and the boundary conditions are given in
Table ??.
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Parameter Value

k1 3.4
k2 0.2
k3 2.3
k4 0.56
k5 5.6
k6 0.12
Xo 10
X1 0

Table 5.2: Values for example (5.5).

This is a problem with more than one variable (S1 and S2) which means
we must use the Newton-Raphson matrix form (5.4) to estimate the steady
state. To use this we require two vectors, xk and f .xk/ and one matrix,
@f .x/=@x. The xk vector is simply:

xk D

�
S1
S2

�
The f .xk/ vector is given by the values of the differential equations:

f .xk/ D

�
.k1Xo � k2S1/ � .k3S1 � k4S2/

.k3S1 � k4S2/ � .k5S2 � k6X1/

�
The @f .x/=@x matrix is the 2 by 2 Jacobian matrix. To compute this we
need to form the derivatives which in this case is straight forward given
that the differential equations are simple. In cases involving more com-
plex rates laws, software will usually estimate the derivatives by numeri-
cal means. In this case however it is easy to differential algebraically to
obtain:
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@f .x/

@x
D

26664
d.dS1=dt/

dS1

d.dS1=dt/

dS2

d.dS2=dt/

dS1

d.dS2=dt/

dS2

37775 D
"
�k2 � k3 �k4

k3 �k4 � k5

#

Notice that the elements of the Jacobian contain only rate constants. This
is because the model we are using is linear. This also means we need
only evaluate the Jacobian and its inverse once. If we used nonlinear rate
laws such as the Michaelis-Menten rate law, the Jacobian matrix would
also contain terms involving the species concentrations and in this case the
Jacobian would need to be reevaluated at each iteration because the value
for the species concentration will change at each iteration. For the current
problem the Jacobian and its inverse is given by:

Jacobian D
�
�2:86 5:6

�0:56 �11:2

�
Jacobian�1 D

�
�0:3876 �0:1938

�0:01938 �0:09898

�
Table 5.3 shows the progress of the iteration as we apply equation 5.4.
What is interesting is that convergence only takes one iteration. This is be-
cause the model is linear. Nonlinear models may require more iterations.
We can also see that after the first iteration the rates of change have very
small values, this is due usually to very small numerical errors in the com-
puter arithmetic but anything as small as 10�14 can be considered zero.

Computing the Steady State Using Simulation Software

The previous section showed how to compute the steady state using the
Newton method. In practice we would not write our own solver but use
existing software to accomplish the same thing. To illustrate this, the fol-
lowing Jarnac script will define and compute the steady state all at once:

// Define model
p = defn cell
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Iteration S1 S1 dS1=dt dS2=dt

0 1 1 36.74 -10.64
1 13.18 0.6589 2:8 � 10�14 �1:16 � 10�13

Table 5.3: Newton-Raphson applied to a Three Step Pathway with Lin-
ear Kinetics. Starting values for S1 and S2 are both set at one. Conver-
gence occurs within one iteration. Note that the values for the rates of
change are extremely small at the end of the first iteration, indicating
we have converged.

$Xo -> S1; k1*Xo - k2*S1;
S1 -> S2; k3*S1 - k4*S2;
S2 -> $X1; k4*S2 - k6*X1;

end;

// Initialize value
p.Xo = 10; p.X1 = 0;
p.k1 = 3.4; p.k2 = 0.2;
p.k2 = 2.3; p.k3 = 0.56;
p.k4 = 5.6; p.k6 = 0.12;

// Initial starting point
p.S1 = 1; p.S2 = 1;

// Compute steady state
p.ss.eval;
println p.S1, p.S2;

Running the above script yields steady state concentrations of 13.1783 and
0.658915 for S1 and S2 respectively, which is the same if we compare
these values to those in Table 5.3. Other tools will have other ways to
compute the steady state, for example graphical interfaces will generally
have a button marked steady state then when selected will compute the
steady state for currently loaded model.
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When using Matlab the function fsolve can be use to solve systems of
nonlinear equation and in Mathematica one would use FindRoot.

5.3 Stability and Robustness

Biological organisms are continually subjected to perturbations. These
perturbations can originate from external influences such as changes in
temperature, light or the availability of nutrients. Perturbations can also
arise internally due to the stochastic nature of molecular events or by ge-
netic variation. One of the most remarkable and characteristic properties
of living systems is their ability to resist such perturbations and maintain
very steady internal conditions. For example the human body can maintain
a constant core temperature of 36.8ıC ˙0:7 even though external temper-
atures may vary widely. The ability of a biological system to maintain a
steady internal environment is called homeostasis, a phrase introduced by
Claude Bernard almost 150 years ago. Modern authors may also refer to
this behavior as robustness.

A biochemical pathway is dynamically stable at steady state if small
perturbations in the floating species concentrations relax back to the
original state.

We can illustrate a stable system using a simple two step model.

Let us assume that the two step pathway has the following form:

Xo

v1 D k1Xo

S1

v2 D k2S1

X1

Figure 5.3 illustrates the results from a simulation of a simple two step
biochemical pathway with one floating species, S1. The Jarnac script used
to generate this graph is given in Table 5.4. A perturbation is made to
the concentration of S1 at a certain time by adding 0.25 units of S1. This
could be accomplished by injecting 0.25 units of S1 into the volume where
the pathway resides. The system is now allowed to evolve further. If the
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p = defn newModel

$Xo -> S1; k1*Xo;

S1 -> $X1; k2*S1;

end;

p.k1 = 0.2;

p.k2 = 0.4;

p.Xo = 1;

p.S1 = 0.5;

// Simulate the first part up to 20 time units

m1 = p.sim.eval (0, 20, 100, [<p.time>, <p.S1>]);

// Perturb the concentration of S1 by 0.35 units

p.S1 = p.S1 + 0.35;

// Continue simulating from last end point

m2 = p.sim.eval (20, 50, 100, [<p.time>, <p.S1>]);

// Merge and plot the two halves of the simulation

graph (augr(m1, m2));

Table 5.4: Jarnac script used to generate Figure 5.3

system is stable, the perturbation will relax back to the original steady
state, as it does in the simulation shown in Figure 5.3. This system is
therefore appear stable.

The differential equation for the single floating species, S1, is given by

dS1

dt
D k1Xo � k2S1 (5.6)

with a steady state solution S1 D k1Xo=k2. The question we wish to ask
here is whether the steady state is stable or not? We can show that the two
step model is stable be using the following mathematical argument. The
differential equation describing the two step model is given by,
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Figure 5.3: Stability of a simple biochemical pathway at steady state.
The steady state concentration of the species S1 is 0.5. A perturbation
is made to S1 by adding an additional 0.25 units of S1 at time D 20.
The system is considered stable because the perturbation relaxes back
to the original steady state. See Table 5.4 for Jarnac listing.

dS1=dt D k1Xo � k2S1

If the system is at steady state, let us make a small perturbation to the
steady state concentration of S1, ıS1 and ask what is the rate of change of
S1 C ıS1 as a result of this perturbation, that is what is d.S1 C ıS1/=dt?
The new rate of change equation is rewritten as follows:

d.S1 C ıS1/

dt
D k1Xo � k2.S1 C ıS1/

If we insert the solution for S1 (equation 5.1) into the above equation we
are left with:

dıS1

dt
D �k2ıS1 (5.7)

In other words the rate of change of the disturbance itself, ıS1 is negative,
that is, the system attempts to reduce the disturbance so that the system re-
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turns back to the original steady state. Systems with this kind of behavior
are called stable. If the rate of change in S1 had been positive instead of
negative however, the perturbation would have continued to diverge away
from the original steady state and the system would them be considered
unstable. The important concept of stability and instability will be con-
sidered in more detail in a later section.

Dividing both sides of equation 5.7 by ıS1 and taking the limit, we find that
@.dS1=dt/=@S1 is equal to �k2. The stability of this simple system can
therefore be determined by inspecting the sign of @.dS1=dt/=@S1 which
can be easily determined by taking the derives of the differential equations
with respect to the species concentrations. For larger systems the stability
of a system can be determined by looking at all the terms @.dSi=dt/=@Si
which are given collectively by the expression:

d.ds=dt/

ds
D J (5.8)

where J is called the Jacobian matrix containing elements of the form
@.dSi=dt/=@Si . Equation ?? can be generalized to:

d.ıs/

dt
D J ıs (5.9)

where J is given by

2666664
@S1=dt
@S1

� � �
@S1=dt
@Sm

:::
: : :

:::

@Sm=dt
@S1

� � �
@Sm=dt
@Sm

3777775
Equation 5.9 is an example of an unforced linear differential equation and
has the general structure:

dx

dt
D Ax

Solutions to such equations are well known and take the form:
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xj .t/ D

nX
kD1

ǰke
�kt

That is the solution to an unforced linear differential equations involves the
sum of exponentials, e�kt . The exponents of the exponentials are given by
the eigenvalues (See Appendix B) of the matrix, A. If the eigenvalues
are negative then the exponents decay (stable) whereas if they are positive
the exponents grow (unstable). We can therefore determine the stability
properties of a given model by computing the eigenvalues of the Jacobian
matrix and looking for any positive eigenvalues. Note that the elements
of the Jacobian matrix will often be a function of the species levels, it is
therefore important that the Jacobian be evaluated at the steady state of
interest.

There are many software packages that will compute the eigenvalues of a
matrix and there are a small number packages that can compute the Jaco-
bian directly from the biochemical model. For example, the script below
is taken from Jarnac, it defines the simple model, initializes the model val-
ues, computes the steady state and then prints out the eigenvalues of the
Jacobian matrix. For a simple one variable model, the Jacobian matrix
only has a single entry and the eigenvalue corresponds to that entry. The
output from running the script is given below showing that the eigenvalue
is �0:3. Sine we have a negative eigenvalue, the pathway must be stable
to perturbations in S1.

p = defn model
$Xo -> S1; k1*Xo;
S1 -> $X1; k2*S1;

end;

// Set up the model initial conditions
p.Xo = 1; p.X1 = 0;
p.k1 = 0.2; p.k2 = 0.3;

// Evaluation the steady state
p.ss.eval;
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// print the eigenvalues of the Jacobian matrix
println eigenvalues (p.Jac);

// Output follows:
{ -0.3}

5.4 Effect of Different Kinds of Perturbations

Effect of Perturbing Floating Species

Figure 5.3 illustrates one kind of perturbation that can be made to a bio-
chemical pathway, in this case perturbing one of the floating molecular
species by physically adding a specific amount of the substance to the vol-
ume in which the pathway resides. In many cases we will find that systems
will recover from such perturbations as we see in Figure 5.3. As mentioned
before systems such as this are called stable. In part 2 of the book we will
discuss some very interesting unstable systems where a perturbation in a
floating species results in the system diverging and moving to a completely
different steady state. In part 2 we will also discuss special cases where
the total mass of a group of floating molecular species are constrained due
to mass conservation. In such cases, perturbing one of the species in the
group will cause the total group mass to change and in this case the system
will not restore itself but settle slightly away from the original steady state.
We will leave a more detailed discussion of these kinds of systems to part
2 of the book.

Effect of Perturbing Model Parameters

In addition to perturbing floating species we can also perturb the model pa-
rameters. Such paramors include kinetic constants and boundary species.
Equation 5.1 shows how the concentration of species S1 depends on all
the parameters in the model. Moreover, changing any of the parameters
results in a change to the steady state concentration of S1 and in turn the
steady state flux. When changing a parameter we can do it in two ways,
we can make a permanent change or we can make a change then at some
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time later can return the parameter value to its original value. Assuming
that the steady state is stable, a temporary change will result in the steady
state changing then recovering to the original state when the parameter is
changed back. Figure 5.4 shows the effect of perturbing the rate constant,
k1 and then restoring the parameter to its original value at some time later.
Table 5.5 shows the Jarnac script that was used to generate this plot. In
some applications other types of perturbations are made. For example in
studying the infusion of a drug where the concentration of the drug is a
model parameter, one might use a slow linear increase in the drug concen-
tration. Such a perturbation is called ramp. More sophisticated analyses
might require a sinusoidal change in a parameter, an impulse or an expo-
nential change. The main point to remember is that parameter changes will
usually result in changes to the steady state concentrations and fluxes.
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Figure 5.4: Effect of Perturbing Model Parameters using the model in
Table 5.5.

5.5 Sensitivity Analysis

Sensitivity analysis at steady state looks at how particular model variables
are influenced by model parameters. There are at least two main rea-
sons why it is interesting to examine sensitivities. The first is a practical
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p = defn newModel

$Xo -> S1; k1*Xo;

S1 -> $X1; k2*S1;

end;

p.k1 = 0.2;

p.k2 = 0.4;

p.Xo = 1;

p.S1 = 0.5;

// Simulate the first part up to 20 time units

m1 = p.sim.eval (0, 20, 5, [<p.time>, <p.S1>]);

// Perturb the parameter k1

p.k1 = p.k1*1.7;

// Simulate from the last point

m2 = p.sim.eval (20, 50, 40, [<p.time>, <p.S1>]);

// Restore the parameter back to orginal value

p.k1 = 0.2;

// Carry out final run of the simulation

m3 = p.sim.eval (50, 80, 40, [<p.time>, <p.S1>]);

// Merge all data sets and plot

m4 = augr(augr(m1, m2), m3);

graph (m4);

Table 5.5: Jarnac script used to generate Figure 5.4
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one. Many kinetic parameters we use in building biochemical models can
have a significant degree of uncertainty about them. By determining how
much each parameter has an influence on the model’s state we can decide
whether we should improve our confidence in the particular parameter. A
parameter that has considerable influence but at the same time has signif-
icant uncertainty is a parameter that should be determined more carefully
by additional experimentation. On the other hand a parameter that has lit-
tle influence but has significant uncertainly associated with it, is relatively
unimportant. A sensitivity analysis can therefore be used to highlight pa-
rameters that need better precision.

The second reason for measuring sensitivities is to provide insight. The
degree to which a parameter can influence a variable tells us something
about about the network is responding to perturbations and it responds to
the degree it does. Such a study can be used to answer questions about ro-
bustness and adaptation. We will delay further discussion of this important
topic to part 2 of the book.

How are sensitivities represented? Traditionally there are two way, one
based on absolute sensitivities and the second based on relative sensitiv-
ities. Absolute sensitivities are simply given by the ratio of the absolute
change in the variable to the absolute change in the parameter. That is:

S D
�V

�p

where V is the variable and p the parameter. This equation shows finite
changes to the parameter and variable. Unfortunately because most sys-
tems are nonlinear, the value for the sensitivity will be a function of the
size of the finite change. To make the sensitivity independent of the size
of the change, the sensitivity is usually defined in terms of infinitesimal
changes:

S D
dV

dp

Although absolute sensitivities are simple they have one drawback namely
that the value can be influenced by the units used to measure the variable
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and parameter. Often in making experimental measurements we won’t be
able to measure the quantity using the most natural units, instead we may
have measurements in terms of fluorescence, colony counts, staining on a
gel and so on. Is is most likely that the variable and parameter units will be
quite different and each laboratory may have its own way particular units
is uses. Absolute sensitivities are therefore quite difficult to compare.

To get round the problem of units, many people will use relative sensitivi-
ties, These are simple scaled absolute sensitivities:

S D
dV

dp

p

V

The sensitivity is defined in terms of infinitesimal changes for the same rea-
son cited before. The reader may also recall that elasticities are measured
in this way. Relative sensitivities are immune from the units we use to
measure quantities but also relative sensitivities correspond more closely
to how many measurements are made, often in terms of relative or fold
changes. In practice steady state relative sensitivities should be measured
by taking a measurement at the operating steady state, making a perturba-
tion (preferable a small one), waiting for the system to reach a new steady
state then measuring the system again. It is important to be aware that the
steady state sensitivities measure how a perturbation in a parameter moves
the system from one steady state to another.

Further Reading

1. Sauro HM (2011) Enzyme Kinetics for Systems Biology. ISBN:
978-0982477311

2. Kipp E, Herwig R, Kowald A, Wierling C and Lehrach H (2005)
Systems Biology in Practice, Wiley-VCH Verlag

Exercises

1. Explain what is meant by a stable and unstable steady state.
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2. The steady state of a given pathway is stable. Explain the effect in
general terms on the steady state if:

a) A bolus of floating species is injected into the pathway

b) A permanent change in a kinetic constant.


