
10
Linear Pathways

10.1 Basic Properties

Linear pathways represent the simplest network motif and are a good start-
ing point to begin to gain insight into how cellular networks operate. The
simplest linear pathway is one where the kinetics are simple mass-action.
Consider the following linear pathway:

Xo ! S1 ! S2 ! : : : Sm ! X1

This pathway has m floating species and n reactions (n D m C 1). Xo
andX1 are are fixed species representing the source and sink pools respec-
tively. To make matters simpler, we can assume that each reaction obeys
the following simple reversible mass-action kinetic law:

vi D kiSi�1 � k�iSi

Recall that the equilibrium constant for such as simple reaction is given by
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Keq D q D
ki

k�i
D

Si

Si�1

which means we can replace the reverse rate constant and rewrite the rate
law as

vi D ki

�
Si�1 �

Si

qi

�
This model is simple enough that we can derive the analytical equation for
the steady state flux through the pathway. One way to do this is to first
start with a two step pathway:

Xo ! S1 ! X1

where the rates for the two steps are given by:

v1 D k1

�
X0 �

S1

q1

�
v2 D k2

�
S1 �

X1

q2

�
By setting v1 D v2 we can solve for the steady state concentration of S1
and then insert this solution into one of the rate laws. This leads to the
steady state flux:

J D
Xoq1q2 �X1
1
k2
q1q2 C

1
k1
q2

The same can be done for a three step pathway and by comparing the two
solutions we can induce that the solution for a pathway of arbitrary length
will be given by:

J D
Xo

Qn
iD1 qi �X1Pn

iD1
1
ki

�Qn
jDi qj

�
For example if the pathway has four steps then the steady state flux is given
by
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J D
Xo q1q2q3q4 �X1

1
k1
q1q2q3q4 C

1
k2
q2q3q4 C

1
k3
q3q4 C

1
k4
q4

and so on. The first thing to note about the flux relationship is that the
flux is a function of all kinetic and thermodynamic parameters. There is
no single parameter that determines the flux completely. This means that a
pathway with randomly assigned parameters is extremely unlikely to have
the first step as the rate limiting step, that is a control coefficient of one.

From the flux expression we can also compute the corresponding flux con-
trol coefficients. For this we need to differentiate the flux equation with
respect to an enzyme activity-like parameter. One way to do this is to add
an ei term to each rate law, such as:

vi D eiki

�
Si�1 �

Si

qi

�
We can eliminate the ei terms afterwards by setting them to one. The result
of this yields the following expression for the flux control coefficient of the
i th step:

C Ji D
1=ki

Qn
jD1 qjPn

jD1 1=kj
Qn
kDj qk

For a three step pathway the flux control coefficients for each step will be
given by:
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D D
1

k1
q1q2q3 C

1

k2
q2q3 C

1

k3
q3

C J1 D
1

k1
q1q2q3=D

C J2 D
1

k2
q2q3=D

C J3 D
1

k3
q3=D

10.2 Irreversibility and Fast Reactions

From the flux control coefficient equation we can make some general state-
ments. Let us assume for example that each equilibrium constant, qi is
greater than one, qi > 1 and also that all forward rate constants are equal
to each other and all reverse rate constants are equal to each other. This
also means that all equilibrium constants are the same. If we now take the
ratio of two adjacent steps, for example the i th and i C 1th step, then we
find:

C Ji

C JiC1
D

1=ki
Qn
jDi qj

1=kiC1
Qn
jDiC1 qj

D
kiC1

ki
qi D q

Given that q > 1, thenC Ji > C JiC1, that is earlier steps will have more flux
control. This pattern applies across the entire pathway such that steps near
the beginning of a pathway will have more control than steps near the end.
We call this effect front loading of control and gives some credence to the
traditional idea that the first or committed step is the most important step in
a pathway. However, front loading only applies to unregulated pathways,
the moment we add regulation to the pathway this picture changes. We
will consider front loading again in a little but more detail later on.

Another way to look at a linear pathway is via the mass-action ratio:
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� D
S2

S1

where the species concentrations are measured at steady state. We define
the disequilibrium ratio, � to be equal to:

� D
�

Keq

If a step is near equilibrium, then � ' 1 whereas if a step is far from
equilibrium then �� 1.

Consider the following linear pathway, whereXo andX1 are fixed species:

v1 v2 v3 v4

"1 "2 "3 "4 "5 "6
Xo

- S1
- S2

- S3
- X4

The elasticities have been labeled 1 to 6, for example "1 represents "v1

S1
, "2

represents "v2

S1
etc. If we give an arbitrary value of one to the first flux con-

trol coefficient for the linear pathway, then by considering the connectivity
theorem for each metabolite, the ratios of all the flux control coefficients
can be shown to be:

C J1 W C
J
2 W C

J
3 W C

J
4 D

1 W �
"1
"2
W �
"1
"2

�
�
"3
"4

�
W �
"1
"2

�
�
"3
"4

��
�
"5
"6

�

or for a pathway of arbitrary length, the nth term will equal:

n�1Y
iD1

 
�
"i
"iC1

!

If we assume that the enzymes are operating below saturation so that they
are governed by the rate law, vi D Vmi=Kmi .Si�1 � Si=Keq_i/, then
we can replace the substrate elasticities by 1=.1 � �i / and the product
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elasticities by ��i=.1� �i /. If we do these substitutions, the ratios of flux
control coefficients become:

C J1 W C
J
2 W C

J
3 W C

J
4 D

.1 � �1/ W �1.1 � �2/ W �1�2.1 � �3/ W �1�2�3.1 � �4/ (10.1)

or for an arbitrary length pathway, the nth term is equal to: 
n�1Y
iD2

�i

!
.1 � pn/

We can draw some interesting conclusions from this relation. Let us make
one of the steps irreversible, say step i , so that the disequilibrium ratio
for that step is zero, (�i D 0), then we can see that since �i appears as
a multiplier in the ratio terms down-stream of the irreversible step, all the
flux control coefficients for steps beyond will be zero. Thus steps beyond
an irreversible reaction have no control over the flux. However, steps up-
stream of the irreversible step may still have control. Therefore, provided
the irreversible step is not the first step of the pathway, an irreversible step
will not necessarily carry a control coefficient of one.

In a linear pathway governed by linear kinetics and without regulation,
all steps downstream of an irreversible step have no flux control.

If any of the steps is near equilibrium then the disequilibrium ratio for that
step will be nearly equal to one. i.e. for step i close to equilibrium, �i � 1.
Under these conditions, the term, .1 � �i / will equal approximately zero
and therefore the flux control coefficient for that step will also be near zero.
In addition, steps other than step i , act as if step i is not part of the pathway
and the pathway appears effectively shortened.

In a linear pathway governed by linear kinetics and without regulation,
any step that is very close to equilibrium will have a control coefficient
close to zero.
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The relationship also supports the notion that in an unregulated pathway,
flux control is biased towards the front of the pathway (front loaded). It is
possible to show that the disequilibrium ratio, � is equal to the ratio of the
reverse and forward rates for a given reaction:

� D
vr

vf

Since the forward rate will always be greater than the reverse rate for a
pathway showing a positive net rate, the disequilibrium ratio will always
be less than one:

� � 1

Since � is always less than one, the tendency is for flux control to be higher
near the front of the pathway since downstream steps have greater multi-
ples of � values that are less than one.

10.3 Front Loading

In a previous section an effect called front loading was introduced. This
is where in a linear pathway with linear reversible kinetics on each step,
given two adjacent flux control coefficients, the upstream coefficient will
always be equal or larger than the downstream coefficient, that is for the
i th step the following is true:

C Ji � C
J
iC1

This means that in a linear pathway control will be concentrated upstream.
To understand what this should be the case we must consider the elasticities
and control equations for a linear pathway.

Using the flux summation and connectivity theorems it is straight forward
to derive the flux control equations. For example for the three step path-
way:
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Xo
v1

S1
v2

S2
v3

X1

one can derive the following flux control coefficient equations:

C JE1
D "21"

3
2=D

C JE2
D �"11"

3
2=D

C JE3
D "11"

2
2=D

where D the denominator is given by:

D D "21"
3
2 � "

1
1"
3
2 C "

1
1"
2
2

It is possible to do this for pathways with additional steps from which a
clear pattern emerges in the equations. For a pathway with n steps where
n is even, we have the following equations:

C J1 D "
2
1 "
3
2 "
4
3 "
5
4 � � � "

nC1
n =D

:::

C Jm D

nY
kDm

"kC1
k

1Y
kDm�1

"kk=D

:::

C Jn D "
1
1 "
2
2 "
3
3 "
4
4 � � � "

nC1
nC1=D

If we look carefully at C J1 we see that the numerator is the product of all
the substrate elasticities. This tells us that the perturbation ’hops’ from one
enzyme to the next until it reaches the end of the pathway. Conversely, the
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control coefficient of the last enzyme includes all the product elasticities,
that is the perturbation ’hops’ from one enzyme to the next until it reaches
the beginning of the pathway.

If we looked at any intermediate enzyme step we would find two groups of
elasticities, one group representing the perturbation traveling downstream
via the substrate elasticities and the other representing the perturbation
traveling upstream via product elasticities.

We must now recall that given a reversible mass-action rate law, such as
k1S � k2P , the elasticities are given by:

"vS D
1

1 � �

"vP D �
�

1 � �

From these equations it follows that "vS C "
v
P D 1, that is:

k "vS k � k "
v
P k

That is the absolute value of the substrate elasticity is always greater than
the product elasticity. Given that an upstream enzyme will have more sub-
strate elasticities than product elasticities, it follows that the numerator
will be larger when compared to an enzyme further downstream which
will have more of the small value product elasticities. The origins of the
asymmetry between the substrate and product elasticities is a thermody-
namic one. If the thermodynamic gradient were to be reversed so that the
pathway flux travel ‘upstream’, the elasticity values exchange so that now
the front loading occurs downstream, although ‘’downstream’ is now ’up-
stream’ because the flux has reversed.

In a linear pathway governed by linear kinetics and without regulation,
flux control is biased towards the start of the pathway, an effect called
front loading.
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10.4 Optimal Allocation of Protein

Protein synthesis constitutes a significant drain on resources in a cell. For
example, protein synthesis consumes approximately 7.5 ATP equivalents
per peptide bond compared to one glucose molecule yielding roughly 36
molecules of ATP. If the average number of peptide bonds in a protein is
300, then it takes roughly 62 molecules of glucose to make just one pro-
tein molecule, not including the cost of the amino acids. In some cultured
mammalian cells, protein synthesis consumes 35% to 50% of all ATP pro-
duction. In addition to the energetic cost, proteins also occupy a significant
proportion of cell volume at around 20 to 30% of the cell. This high level
approaches the solubility limit of proteins and also limits the diffusion of
other smaller molecules. These and other issues effectively put an up-
per limit on the total amount of protein in a cell. It would seem logical
to assume that the distribution of a fixed amount of protein is not evenly
distributed because some processes may requires higher levels of protein
compared to others suggesting competition for protein between different
processes. Such distributions are likely to be under evolutionary selection
so that there exists an optimal allocation of the fixed amount of protein
to all process in the cell. The optimal allocation is also likely to shift as
environmental conditions change.

In this section we will consider what is the optimal allocation of a fixed
amount of protein in a metabolic pathway such that the steady state path-
way flux is maximized.

Let us consider a very simple two step metabolic scheme shown below:

Xo ! S1 ! X1

Assume that the first step is catalyzed by an enzyme E1 and the second
step by an enzyme E2. Let us reduce the amount of enzyme E1 by a small
amount, ıE1, such that the pathway flux is reduced by an amount ıJ . We
can now increase the level ofE2 by ıE2 so that the pathway flux is returned
to the original state. The net change in protein is therefore ıE1 C ıE2.

Let us also assume that the levels of E1 and E2 had previously being ad-
justed so that for a given flux, the total E1 C E2 was at a minimum, that
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is the distribution of protein was optimal. In other words it would not be
possible to reduce the total amount of protein and at the same time adjust
the protein distribution such that the flux is unchanged. Then it must be
true that:

ıE1 C ıE2 D 0

Given these changes in Ei and the fact that the flux does not change, we
can write the following:

C JE1

ıE1

E1
C C JE2

ıE2

E2
D
ıJ

J
D 0

Submitting ıE1 C ıE2 D 0 into the above relation yields:

C JE1

1

E1
D C JE2

1

E2

We can now invoke the flux summation theorem to eliminate one of the
control coefficients to yield:

C JE1

1

E1
D

�
1 � C JE1

� 1

E2

Rearranging this to solve for C JE1
yields:

C JE1
D

E1

E1 CE2

This result can be generalized to any length pathway so that for a given
total amount of protein and a given flux, the optimal allocation of protein
at a particular step, i , is given by:

C JEi
D

EiP
Ei
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Exercises

1. Prove equation 10.1 in the main text.


