Introduction to Biochemical
Control

9.1 What do we Mean by Control?

The term control has a special meaning in biochemical network studies.
Control refers to the ability of a system parameter to affect a system vari-
able. For example, changes to the external glucose concentration in a
microbial culture will most likely change the culture’s growth rate. The
concentration of glucose therefore has ’control’ over the growth rate. En-
gineering an enzyme in pathway so that its kcat is larger will result in
changes to the pathways flux and metabolite concentrations. Changes to
the promoter consensus sequence of a particular gene will result in changes
to the concentration of the expressed protein and any other variables that
depends on that protein. It is possible to quantify control by either mea-
suring or computing control coefficients.
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9.2 Control Coefficients

9.2.1 Small Perturbation Analysis

Given that deriving analytical solutions to the model equations is next to
impossible except in simple or special cases, the one approach that can
be used is small perturbation analysis. This technique involves making
small changes around a steady state and observing the response. Small
changes, strictly speaking infinitesimal changes, ensure that only the linear
components of a system are stimulated and linear systems can be studied
analytically.

At steady state, a reaction network will sustain a steady rate called the
flux, often denoted by the symbol, J. The flux describes the rate of mass
transfer through the pathway. In a linear chain of reactions, the steady
state flux has the same value at every reaction. In a branched pathway,
the flux divides at the branch points. The flux through a pathway can be
influenced by a number of external factors, these include factors such as
enzyme activities, rate constants and boundary species. Thus, changing the
gene expression that codes for an enzyme in a metabolic pathway will have
some influence on the steady state flux through the pathway. The amount
by which the flux changes is expressed by the flux control coefficient.

j _dJ Ei _dinJ
Ei ™ dE; J ~ dhE;

~ J%/E;%

In the expression above, J is the flux through the pathway and E; the
enzyme activity of the i’ h step. The flux control coefficient measures the
fractional change in flux brought about by a given fractional change in
enzyme activity. Note that the coefficient is defined for small changes.
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9.3 Distribution of Control

9.3.1 Summation Theorems

Flux control coefficients are a useful measure to judge the degree to which
a particular step influences the steady state flux. Even more interesting is
that there a numerous relationships between the various coefficients. Of
interest here is the summation theorem.

Consider the simple two step pathway:

X, 5% s 2 x,

In general, the following relation will be true at steady state:

Ul(Xo,S,El,kl,...) — U2(S,X1,E2,k2,...) =0

where the rates are expressed as functions of their influencing factors. We
will assume that each rate is a function of an enzyme concentration factor,
E;, arate constant, k; and a substrate and product.

There is a simple graphical technique we can use to study how the enzyme
activities, £1 and E, control the steady state concentration S, and the
steady state flux, J through the pathway. In this system, the steady state
flux, J will be numerically equal to the reaction rates v, and v,

J=U1=U2

It is important to recall that for many enzyme catalyzed reactions the rate,
v is proportional to the concentration of enzyme, E, v o E.

Let us plot both reaction rates, v; and v, against the substrate concentra-
tion S.

Note the response of vy to changes in S. v; falls as S increases due to
product inhibition by S. The intersection point of the two curves marks the
point when v; = vs, that is the steady state. A line dropped perpendicular
from the intersection point marks the steady state concentration of S
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Figure 9.1: Plot of v; and v, versus the concentration of S for a simple
two step pathway. The intersection of the two curve marks the point
when v; = v, that is steady state. A perpendicular dropped from this
point gives the steady state concentration of S

Let us now increase the activity of E> by 30% by adding more enzyme.
Because the reaction rate is proportional to E5, the curve is scaled upwards
although its general shape says the same. Note how the intersection point
moves to the left, indicating that the steady state concentration of S de-
creases relative to the reference state. This is understandable because with
a higher v, more S is consumed therefore S decreases.

In the next experiment, let us restore E, back to its original level and
instead increase the amount of E{ by 30%. Again, changing E; simply
scales the v; curve but because of the negative curvature, the v; curve
shifts right. This moves the intersection point to the right, indicating that
the steady state concentration of S increases relative to the reference state.

Let us now change the activity of both £ and E; by 30%. Note that the
curve for v1 and vy are both scaled upwards, this in turns moves the inter-
section point upwards but doesn’t change the steady state concentration of
S. This happens because both curves move vertically by the same fraction
so that the intersection point can only move vertically. This experiment
highlights an important result, when all enzyme activities are increased by



9.3. DISTRIBUTION OF CONTROL 149

1
0.8 8
U2
N
= 0.6 8
~
g
- 04) 8
0.2+ V1 =
O | | | |
0 2 4 6 8 10

Substrate Concentration

Figure 9.2: v; has been increased by 30% by increasing the enzyme
activity on vy. This results in a displacement of the steady state curve
to the right, leading to an increase in the steady state concentration of
S.

the same fraction, the flux increases by that same fraction but the species
or metabolite levels remain unchanged. We can summarize this with the
following statement:

If all E; are increased by a factor « then the steady state change in J and
Si is:

[ 6J =aJ and 6S =0 ]

From these thought experiments we can conclude that increasing the activ-
ities of both enzymes by the same fraction will increase the flux through
the pathway but will not change the concentration of the pathway species,
S. This conclusion is in fact quite general and no matter how complex the
pathway. If we were to increase the activity of every step in the pathway by
the same proportion, the concentration of every metabolite would remain
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Figure 9.3: v, has been increased by 30% by increasing the enzyme
activity on v,. This results in a displacement of the steady state curve
to the left, leading to a decrease in the steady state concentration of S.

unchanged but with a proportionate change in flux. Although we know
that §S = 0, how much has the flux increased under these conditions?

Since §S = 0, the only change that could possibly effect the flux is the
change in enzyme activity, since the enzyme activity has increased by a
given proportion (30%), then the flux must also have increased by the same
proportion since the rate is proportional to the enzyme activity (i.e v; &
Ep).

The can expression the control coefficients in the following form:

J ~ EE
8S; s. 0F;
07— ¢
Sj E; E;

These simple relations allow us to compute the change in flux or concen-
tration given a change in an enzyme activities. If we perturb more than one
enzyme activity, we can get the overall change by summing up the individ-
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Figure 9.4: In this experiment, both v; and v, are increased by 30 %.
Because both rates are increased by the same amount, the rate of change
of S does not change. This means that there is no resulting change to
the steady state concentration of S. The net flux through the pathway
has however increased by 30 %.

ual changes. In general, if we make changes to n reaction steps, then the
overall change in flux and species concentrations is given by:

L SE;
R cl
J z=21 E; Ei
8 - XH:CS SE;

< "Ei |

The above relationship can be justified by assuming that there exists a re-
lationship between the flux, J, and enzyme concentrations, that is:



152 CHAPTER 9. INTRODUCTION TO BIOCHEMICAL CONTROL

‘] = J(E15E2"")

Taking the total derivative of J:

0J 0J
dJ] = —dE —dEy +---
OE, 1+ o5, 2+
Dividing both sides by J and dividing top and bottom of each term by the
appropriate E; leads to the relation

8J SEq SE>

T ocl =2y 224

J B g, Ok E, +
The same reasoning applies to the species relationship.

For the two step pathway, let us repeat the thought experiment where we
increased both enzyme activities at the same time. So long as we con-
sider small changes, we can compute the overall change in flux or species
concentration by simply adding the control coefficient terms, thus:

=cl —4cl ==
J E‘E1+E2E2

N SE, SE,
Z_cS =24 cS =2
s ~“EE TR,
However, we know from the thought experiments that §S = 0 and the

change in flux must equation the fractional change in enzyme activity, that
18 5]/] = 5E1/E1 = 5E2/E2 =u

Rewriting the above equations as:
a=C éla +C gza
0=Cfa+Cgua
from which we conclude:
1=Cj, +Cf,
0=Cf +Cg,
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These summations (or theorems) are in fact general and apply to any path-
way so long as v; o« Ej:

Control Coefficient Summation Theorem

n
Y ¢l =1

i=1

n
>cg -0

i=1

In both relationships, 7, is the number of reaction steps in the pathway. The
flux summation theorem suggests that there is a finite amount of ‘control’
(or sensitivity) and that control is shared between all steps. In addition,
it states that if one step were to gain control then one or more other steps
must lose control.

To summarize, these theorems suggest the following:
1) Control is shared throughout a pathway.
2) If one step gains control, one of more other steps must loose control.

3) Control coefficients are system properties, they can only be computed
or measured in the intact system.

It is easy to confirm the summation theorems for the linear pathways stud-
ies in the previous section. For example, the flux control coefficient for the
ith step was given by:

l Z;l:l 1/k;j HZ:,- dk

Summing this over all steps gives a value of one.
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9.3.2 Rate-limiting Steps

In much of the literature and some contemporary textbooks, one will often
find a brief discussion of an idea called the rate-limiting step. The literature
is in general unclear about the meaning of this phrase but some interpret
the rate-limiting step to be the single step in pathway which limits the flux.
In terms of our control coefficients we can interpret the rate-limiting step
as the step with a flux control coefficient of unity. This means, by the
summation theorem, that all other steps (at least in a linear chain) must
have flux control coefficients of zero. Such a situation is not likely to
occur in a real system and experiments show in fact that control is shared
amongst many steps and no one step can be designated the rate-limiting
step.

9.4 Connectivity Theorems

The connectivity theorem is an extremely important result in the theory
of cellular networks. The theorem relates the control coefficients to the
elasticities, that is it relates system wide properties to local properties.

ZCE ey =

i=1

S cSnell =

i=1

ZCS"sSk =—1

i=1

In the derivation of the summation theorems, certain operations were per-
formed on the pathway such that the flux changed value but the concentra-
tions of the metabolites were unchanged, thus dJ/J # 0and dS/S = 0.

The constraints on the flux and concentration variables in the summation
theorems suggest another set of operations which could accomplish the
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opposite. That is can we perform one or more operations to the enzymes
such that dJ/J = 0 and dS/S # 0. The short answer is that we can and
such a set of operations which preserve the flux but change the metabolite
concentrations leads to another set of theorems, called the connectivity
theorems.

Consider the following pathway fragment:

Vo V1 (%) v3
—> Sl —> S2 —> S3 —

Let us make a change to the rate through reaction 1 (v;) by increasing the
concentration of the enzyme catalysing reaction 1 (£7). Let us assume we
increase £ by an amount, §E;. This will result in a change in the steady
state of the pathway. The concentration of S3, 53, and the flux through the
pathway will rise and the concentration of S; will decrease because it is
upstream of the disturbance.

The condition we wish to impose is now to make a second change to the
pathway so that we restore the flux back to what it was before either change
was made. Since the flux has increased we need to decrease the flux and
we can easily do this by decreasing one of the other enzyme activities. If
we decrease the concentration of E» this will reduce the flux. Decreasing
E> will also cause the concentration of S, to increase further. However,
S1 and S3 will change in the opposite direction to the change they made
when E{ was modulated.

In fact when FE, is changed sufficiently so that the flux is restored to its
original value, the concentrations of S and S5 will also be restored to their
original values and it is only S, that will be different. This is true because
the flux through v, is now the same as it was originally, and coupled to
the fact that £, has not been manipulated in any way must mean that the
concentrations of S and all metabolites upstream of S; must be the same
as they were before the modulations were made. The same arguments
apply to S3.

We have thus accomplished the following: E; has been increased by §E1,
this results in a change §J to the flux. We know decrease the concentration
of E such that the change in flux compared to its original value is zero. In
the process, S» has changed by 65> and neither S nor S3 have changed. In
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fact no other metabolite in the entire metabolic system has changed other
than S,.

The ability to perform such a manipulation is quite general and even if
a particular metabolite had many rates coming in and many rates leaving
we would still be able to perform the necessary manipulations on all the
adjacent enzymes such that only that metabolite changed in concentration
and the flux was unaltered.

Flux Connectivity Theorem

We can now write down two sets of equations which apply simultaneously
to the pathway, a local equation and a system equation. The system equa-
tion will describe the effect of the enzyme changes on the flux. Since the
net change in flux is zero and the fact that we only changed E; and E,, we
can write for the change in the system flux the following system equation:

dJ dE dE

J VEy 2 Ep
To determine the local equations we concentrate on the what is happening
at a particular reaction rate. For example, as a result of making changes to
E1 and E,, the rate change v is given by

dvl dE] V] dS2
= T m Tees,
1 1 2

and at vy

_ @ . dEz +8v2 dS2

0 P =
1%) E2 52 Sz

Note that dE1/ E1 will not equal d E5/ E5 and that the changes in the rates
were zero. The local equations can be rearranged so that:
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dE, o dS2

0= "~ = 1 9.1
E —E€5 o S, 9.1
dE; o dSz

0= = = 2 9.2
E —&5, o S5 9.2)

We can now insert dE1/E1 and dE,/ E» from the local equations into the
system equations and obtain:

dJ dS v, dS2
0= 7 (CEI S2 S CEz S225_2)

and therefore:

dSz J v
0= S, (CE1 +CE28322)

Since we know that dS»/S> is not equal to zero then it must be true that

0= cgl + CE28SZ

This derivation is quite general and can be applied to a metabolite that
interacts with any number if steps, In general the sum of the terms will
equal the number of interactions a metabolite makes. For example, in the
pathway fragment:

where S interacts with it production rate, vy, a consumption rate, v,, and
an inhibitory interaction with v3, then the connectivity may be written as
J .1 J v2 J vz _

Cpeg + CE2SS + CE3SS =0

1
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;
0= ch{hg?

i=1

Concentration Connectivity Theorem

To derive the flux connectivity theorem we had to use the system equation
that was related to the flux. It is however possible to use a different set
of systems equations, those with respect to the metabolite concentrations.
In the case of the metabolites there will be two distinct systems equations.
One of these will describe the effect that our modulations have on the com-
mon metabolite (S in the example), and a second describing the effect on
any other metabolite (S, S3, etc.) in the pathway. Consider first the sys-
tem equation involving the common metabolite; for the pathway under
consideration this equation is given by:

dsS, _ CS2dE1 . Csszz
S> Er gy Ex g,
We must remember that the change in the common metabolite, dS> /S>3,
is non-zero. Therefore substituting in the local equations given previously
leads to:

dS» S, v, dS2

e =T e g L P - 4%
Sz - E{1°S> S2 E>°S» S2
Since dS»/S> # 0, we can cancel the term d S, /S, and this leads to the
first concentration connectivity theorem:

— S2.1 S> v2
—1= CE18S2 + CEzz?S2
A second theorem can be derived by considering the effect of our modu-
lations on a distant metabolite, for example S3. In this case, the system
equation now with respect to S3, becomes:

ds dE
0="2=c5H21

S3 Ev gy

s; dE>

+Co
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Note that the equation equals zero because our operations ensure that metabo-
lites other than the common metabolite do not change in concentration.

Substituting once again the local equations into the above system equation
leads us to:

dS3 5 0 dS2 sy 045
0=— S3 = CE] N S, CE2 N S,
or
dS2 S3 v1 S3 o
0= (Cirey, +Cczel2)

However, we know that dS, /S5 is not zero, therefore it must be the case
that:

S3 v1 S3 vy
0=Cp CE2852

That completes the proof for the concentration connectivity theorems. As
with the flux connectivity theorems, the concentration connectivity the-
orems can be generalized to any number of steps that a metabolite may
interacts with.

To summarize, the connectivity theorems are:

Flux Connectivity Theorem with respect to a common metabolite, Sk
where r is the number of interactions.

-

J i _
ZCE €S = 0
i=1

Concentration Connectivity Theorem with respect to the common
metabolite Sk where r is the number of interactions.

ZCSksg’k =1

i=1
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Concentration Connectivity Theorem with respect to the common
metabolite Sk and a distant metabolite, Sy, where r is the number of
interactions.

,
Sm Vi _
ZCEi €Sy =0

i=1

Interpretation The connectivity theorems are important for a number
of reasons. The first and foremost is that the theorems link local effects in
terms of the elasticities to global effects in terms of the control coefficients.
Consider for example the following linear pathway.

V1 (%)
S —

The flux connectivity can be written in the form:
J v2
Ce, __fs

J = V]
CE2 851

That is the ratio of two adjacent flux control coefficients is inversely pro-
portional to the ratio of the corresponding elasticities. This confirms the
result in the last chapter where it was seen that high flux control coeffi-
cients tend to be correlated with small elasticities of the enzyme and small
flux control coefficients with large elasticities. This was easily explained
in terms of changes to metabolites opposing changes in rates by metabo-
lites moving in a direction opposite to the rate change. Since metabolites
with high elasticities are able to oppose rate changes more effectively than
small elasticities then it follows that large elasticities are associated with
small flux control coefficients and vice versa. The classic example of this
is the case of a reaction operating near equilibrium where the elasticities
are very high relative to adjacent elasticities on neighboring enzymes. In
such situations the flux control coefficients of near equilibrium enzymes
are likely to be small. However, one must bear in mind that it is the ratio of
elasticities which is important and not their absolute values. Simply exam-
ining the elasticity of a single reaction may lead to incorrect conclusions.
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Even more so, one must also consider all the ratios of the elasticities along
a pathway because even though one elasticity ratio may suggest a high or
low flux control coefficient on a particular enzyme, it is a consideration of
the other ratios coupled to the flux summation theorem that will give an
absolute value to a particular flux control coefficient. Control coefficients
are truly system wide properties. The examination of a single enzyme will
not give an absolute indication of the ability of that enzyme to control the
flux.

9.5 Response Coefficients

Control coefficients measure the response of a pathway to changes in en-
zyme activities. What out the effect or external factors such as inhibitors,
pharmaceutical drugs or boundary species? Such effects are measured by
another coefficient called the response coefficient. The flux response coef-
ficient is defined by:

dJ X
R, =""2
X7 dxJ

and the concentration response coefficient by:

s _dS X

X7dx s
The response coefficient measures how sensitive a pathway is to changes
in external factors other than enzyme activities. What is the relationship
of the response coefficients with respect to the control coefficients and
elasticities?
Like many proofs in this theory we can carry out a thought experiment as

follows. Consider the pathway fragment below:

U1 1)
X — 85—

where X is the pathway boundary species. Let us increase the activity
of vy by increasing the concentration of £;. This will cause the steady
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state flux and concentration of S and in fact all downstream species to
increase. Let us now decrease the concentration of X such that we restore
the flux and steady state concentration of S back to its original value. From
this thought experiment we can write the operations in terms of the local
response equation and a system response equation as follows:

Bur _ n8X | ) 8E)

=gl =0
V1 8X X gEl E1

oJ 5X 0E

— =RJ— +Cf — =0

7Ty TREE

We can eliminate the §E/E; term in the system response equation by
substituting the term from the local response equation and recalling that

v .
) Ell = 1 we can obtain:

J J

From this we conclude that:

J _ ~J U1
RX _CE18X

This gives use the relationship we seek. It can be generalized for multi-
ple external factors acting simultaneously but summing up individual re-
sponses:

n

J _ J Ui

RX - ZCEigX
i=1

Likewise the response of a species, S to an external factor is given by:

n
S _ S Vi
Ry = E CEisX’
i=1

The response coefficient carries an important message, which is that the
response of some external factor, X, is a function of two things, the effect
the factor has on the step it acts upon and the effect that the step itself
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has on changing the system. This means than an effective external factor,
such as a pharmaceutical drug, must not only be able to bind and inhibit
the enzyme being targeted, but the step itself must be able to transmit the
effect to the rest of the pathway.

9.6 Computing Control Equations

In previous sections we have seen how the control coefficients can give
useful information on the robustness of a network to parameter changes.
In addition we have seen that relationships exist between the control coef-
ficients and the elasticities. In this section we will look at ways to express
the control coefficients in terms of the elasticities of which there are a num-
ber. The simplest way to derive the control equations is to combine the
summation and connectivity theorems. For example, a two step pathway
such as:

X, 2% s 2 x,

There is one connectivity theorem for every species in a pathway so that
in the above example there will only be one connectivity theorem centered
around S':
J v J v2 _
Cges +Creg =0
In addition, there will be a flux summation theorem:

Ch +Ch, =1

These two equations can be combined to give expressions that relate the
control coefficients in terms of the elasticities, thus:

e
J _ S
CE1 2 _ gl

S S

1

e

J S
CEz T2 1
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These equations, possibly the most important result of the theory, allow us
to understand how system responses depend on local properties.

Using these equations we can look at some simple extreme behaviors. For
example, let us assume that the first step is completely insensitive to its
product, S, then 8‘15 = 0. In this case, the control coefficients reduce to:

cl =1

Ccl =0

That is all the control (or sensitivity) is on the first step. This situation
represents the classic rate-limiting step that is frequently mentioned in text
books. The flux through the pathway is completely dependent on the first
step. Under these conditions, no other step in the pathway can affect the
flux. The effect is however dependent on the complete insensitivity of the
first step to its product. Such a situation is likely to be rare in real path-
ways. In fact the classic rate limiting step has almost never been observed
experimentally. Instead, a range of “limitingness” is observed, with some
steps having more “limitingness” (control) than others. We can shift con-
trol off the first step by increasing the product inhibition.

For more complex pathways such as branches and moiety conserved cy-
cles, additional theorems are required.



