Manifold-valued statistical models for longitudinal morphometric analysis in preclinical Alzheimers disease (AD)

Back to Main BRAIN TMM page

PI: Singh, Vikas (contact); Johnson, Sterling C

Email: VSINGH@BIOSTAT.WISC.EDU

Institution: University of Wisconsin-Madison

Title: Manifold-valued statistical models for longitudinal morphometric analysis in preclinical Alzheimers disease (AD)

Grant #: EB022883 

Status: Completed

Deliverables:


Dual stream flow based generative models for manifold-valued data (ICCV 2019)

{"preview_thumbnail":"/sites/default/files/styles/video_embed_wysiwyg_preview/public/video_thumbnails/XFjoZJb_41E.jpg?itok=DmwtlpLL","video_url":"https://www.youtube.com/watch?v=XFjoZJb_41E","settings":{"responsive":0,"width":"213","height":"120","autoplay":0},"settings_summary":["Embedded Video (213x120)."]}

tl; dr: Modality transfer for manifold-valued images


 ODE for Panel data (UAI 2021)

{"preview_thumbnail":"/sites/default/files/styles/video_embed_wysiwyg_preview/public/video_thumbnails/Nmum5urconQ.jpg?itok=f1o1oF98","video_url":"https://youtu.be/Nmum5urconQ","settings":{"responsive":0,"width":"213","height":"120","autoplay":0},"settings_summary":["Embedded Video (213x120)."]}

tl; dr: Analyzing panel/longitudinal imaging data using deep mixed effects ordinary differential equations


GANs for FreeSurfer cortical surface data (PAMI 2021)

tl; dr: When is it sensible to use synthetic brain imaging data for statistical analysis? Can the results be trusted?


 Differential equations based modeling of longitudinal amyloid scans (ISBI 2020)

tl; dr: Neural differential equations can be used to model and make prognosis for longitudinal amyloid images


Sampling Free Uncertainty Estimation for Longitudinal Data (UAI 2019)

tl; dr: If GRUs are used to model longitudinal data, sampling is not required for uncertainty estimates (under mild assumptions)


Random Effects CNN (IPMI 2019)

tl; dr: Random effects to model dependent/longitudinal data is possible via moderate adjustments in CNN models


Dilated CNNs for Manifold valued data (ICCV 2019)

{"preview_thumbnail":"/sites/default/files/styles/video_embed_wysiwyg_preview/public/video_thumbnails/_nT2hrYQL0w.jpg?itok=NbKwpb5z","video_url":"https://www.youtube.com/watch?v=_nT2hrYQL0w","settings":{"responsive":0,"width":"213","height":"120","autoplay":0},"settings_summary":["Embedded Video (213x120)."]}

tl; dr: Sequential manifold measurements (such as morphometric change images or diffusion MR) can be modeled using dilated CNN


Conditional Recurrent Flow (ICCV 2019) 

tl; dr: Longitudinal amyloid and morphometric change data can be modeled using invertible flow models


A Statistical Recurrent Unit (SRU) for SPD Matrices (NIPS 2018)

tl; dr: Provides a theoretical formulation to deal with sequential manifold-valued measurements


Riemannian Mixed Effects Model (CVPR 2017)

tl; dr: A formulation for efficient parameter estimation of mixed effects model on manifold-valued measurements

 


 


NIBIB Math Project - Singh.pptx [deprecated]

 

 

 

 

 

Back to Main BRAIN TMM page

Table sorting checkbox
Off