PI: Dyer, Eva
Email: evadyer@gatech.edu
Institution: Georgia Tech
Title: A comparative framework for modeling the low-dimensional geometry of neural population states
Grant #: EB029852
Status: Active
Deliverables:
- C-H. Lin, M. Azabou, E.L. Dyer, Making transport more robust and interpretable by moving data through a small number of anchor points, to appear at the International Conference on Machine Learning (ICML), 2021 (Preprint, Code)
- M. Azabou, M. Gheshlaghi Azar, R. Liu, C-H. Lin, E.C. Johnson, K. Bhaskharan-Nair, M. Dabagia, K.B. Hengen, W. Gray-Roncal, M. Valko, E.L. Dyer, Mine Your Own vieW: Self-supervised learning through across-sample prediction, Feb 2021 (Preprint, Code)
2021 Brain PI Meeting
Update:
Link to Poster:
- M. Azabou, M. Gheshlaghi Azar, R. Liu, C-H. Lin, E.C. Johnson, K. Bhaskharan-Nair, M. Dabagia, K.B. Hengen, W. Gray-Roncal, M. Valko, E.L. Dyer, Building invariances into neural decoding through adaptive self-alignment (Poster #4026). [Link to Poster] [Code and Demos]
Demo: [no demo]
Table sorting checkbox
Off