Oxyhemoglobin dissociation curve calculated using Buerk's equation. The equation contains a term dependent on Temp, CO2, DPG, and pH.
Description
Oxyhemoglobin dissociation curve by Buerk's equation. Model requires 2 parameters (O2 partial pressure and rate parameter, K) and a scaling factor. Four additional parameters (T, DPG, pH, CO2) are needed when calculating SHbO2 for nonstandard conditions. Compare and contrast to other HbO2 dissociation calculations such as Hill (model #0028), Severinghaus (#0027), Adair (#0238), Kelman (#0294), and Dash (#0032).
Equations
The equations for this model may be viewed by running the JSim model applet and clicking on the Source tab at the bottom left of JSim's Run Time graphical user interface. The equations are written in JSim's Mathematical Modeling Language (MML). See the Introduction to MML and the MML Reference Manual. Additional documentation for MML can be found by using the search option at the Physiome home page.
- Download JSim model MML code (text):
- Download translated SBML version of model (if available):
We welcome comments and feedback for this model. Please use the button below to send comments:
Adair GS. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J Biol Chem 63: 529-545, 1925. Buerk DG, Bridges EW, A simpified algorithm for computing the variation in oxyhemoglobin saturation with pH, PCO2, T and DPG, Chem Eng Commun, 1985, Vol 47, 113-124 Kelman GR, Digital computer subroutine for the conversion of oxygen tension into saturation. Journal of Applied Physiology, July 1966 21(4), 1375-1376 Hill R. Oxygen dissociation curves of muscle hemoglobin. Proc Roy Soc Lond B 120: 472-480, 1936. Roughton FJW, Deland EC, Kernohan JC, and Severinghaus JW. Some recent studies of the oxyhemoglobin dissociation curve of human blood under physiological conditions and the fitting of the Adair equation to the standard curve. In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. Proceedings of the Alfred Benzon Symposium IV Held at the Premises of the Royal Danish Academy of Sciences and Letters, Copenhagen 17-22 May, 1971, edited by Rorth M and Astrup P. Copenhagen: Munksgaard, 1972, p. 73-81. Severinghaus, JW. Simple, accurate equations for human blood 02 dissociation computations. J. Appl. Physiol.:Respirat. Environ. Exercise Physiol. 46(3): 599-602, 1979. Winslow RM, Swenberg M-L, Berger RL, Shrager RI, Luzzana M, Samaja M,and Rossi-Bernardi L. Oxygen equilibrium curve of normal human blood and its evaluation by Adair's equation. J Biol Chem 252: 2331-2337, 1977.
Please cite https://www.imagwiki.nibib.nih.gov/physiome in any publication for which this software is used and send one reprint to the address given below:
The National Simulation Resource, Director J. B. Bassingthwaighte, Department of Bioengineering, University of Washington, Seattle WA 98195-5061.
Model development and archiving support at https://www.imagwiki.nibib.nih.gov/physiome provided by the following grants: NIH U01HL122199 Analyzing the Cardiac Power Grid, 09/15/2015 - 05/31/2020, NIH/NIBIB BE08407 Software Integration, JSim and SBW 6/1/09-5/31/13; NIH/NHLBI T15 HL88516-01 Modeling for Heart, Lung and Blood: From Cell to Organ, 4/1/07-3/31/11; NSF BES-0506477 Adaptive Multi-Scale Model Simulation, 8/15/05-7/31/08; NIH/NHLBI R01 HL073598 Core 3: 3D Imaging and Computer Modeling of the Respiratory Tract, 9/1/04-8/31/09; as well as prior support from NIH/NCRR P41 RR01243 Simulation Resource in Circulatory Mass Transport and Exchange, 12/1/1980-11/30/01 and NIH/NIBIB R01 EB001973 JSim: A Simulation Analysis Platform, 3/1/02-2/28/07.