"Evaluation of digital breast tomosynthesis as replacement of full-field digital mammography using an in silico imaging trial

Submitted by esizikova on Tue, 05/09/2023 - 18:53
Authors
Aldo Badano
Christian G. Graff
Andreu Badal
Diksha Sharma
Rongping Zeng
Frank W. Samuelson
Stephen J. Glick
Kyle J. Myers
DOI
doi:10.1001/jamanetworkopen.2018.5474
Publication journal
JAMA Network Open

Importance  Expensive and lengthy clinical trials can delay regulatory evaluation of innovative technologies, affecting patient access to high-quality medical products. Simulation is increasingly being used in product development but rarely in regulatory applications.

Objectives  To conduct a computer-simulated imaging trial evaluating digital breast tomosynthesis (DBT) as a replacement for digital mammography (DM) and to compare the results with a comparative clinical trial.

Design, Setting, and Participants  The simulated Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) trial was designed to replicate a clinical trial that used human patients and radiologists. Images obtained with in silico versions of DM and DBT systems via fast Monte Carlo x-ray transport were interpreted by a computational reader detecting the presence of lesions. A total of 2986 synthetic image–based virtual patients with breast sizes and radiographic densities representative of a screening population and compressed thicknesses from 3.5 to 6 cm were generated using an analytic approach in which anatomical structures are randomly created within a predefined breast volume and compressed in the craniocaudal orientation. A positive cohort contained a digitally inserted microcalcification cluster or spiculated mass.

Main Outcomes and Measures  The trial end point was the difference in area under the receiver operating characteristic curve between modalities for lesion detection. The trial was sized for an SE of 0.01 in the change in area under the curve (AUC), half the uncertainty in the comparative clinical trial.

Results  In this trial, computational readers analyzed 31 055 DM and 27 960 DBT cases from 2986 virtual patients with the following Breast Imaging Reporting and Data System densities: 286 (9.6%) extremely dense, 1200 (40.2%) heterogeneously dense, 1200 (40.2%) scattered fibroglandular densities, and 300 (10.0%) almost entirely fat. The mean (SE) change in AUC was 0.0587 (0.0062) (P < .001) in favor of DBT. The change in AUC was larger for masses (mean [SE], 0.0903 [0.008]) than for calcifications (mean [SE], 0.0268 [0.004]), which was consistent with the findings of the comparative trial (mean [SE], 0.065 [0.017] for masses and −0.047 [0.032] for calcifications).

Conclusions and Relevance  The results of the simulated VICTRE trial are consistent with the performance seen in the comparative trial. While further research is needed to assess the generalizability of these findings, in silico imaging trials represent a viable source of regulatory evidence for imaging devices.

Publication Date
Keywords
In Silico Trials; Breast Imaging