Multiscale Modeling of Neural Control of Breathing

Neural circuits involved in generation of the respiratory rhythm and control of breathing is one of the most studied system in the mammalian brain. Yet the more experimental data become available the more heated become the debates concerning the neural mechanisms involved. The main reason of the controversy is that particular oscillatory regimes observed result from interactions of mechanisms and processes operating on significantly different temporal and spatial scales. In this talk I will address a number of experimental observations leading to seemingly contradicting hypotheses about mechanisms of respiratory rhythm generation, and analyze them from the single theoretical perspective which includes a spectrum of time and spatial scales from the sub-cellular and cellular levels (voltage-dependent ionic channels, ionic concentrations, pumps, etc.) to the network and system levels of operation. I will demonstrate the conditions in which interventions on smaller scales may or may not lead to significant perturbations on the higher hierarchical level and/or on longer time scales.

Webinar Start Date
Webinar End Date
Presenter
Dr. Yaroslav Molkov, Math Dept., Indiana and Purdue Universities